MAX3956

11.3Gbps Transceiver with DDM and DC-Coupled Laser Interface

General Description

The MAX3956 is an 11.3Gbps, highly-integrated, low-power transceiver with digital diagnostics monitoring (DDM) designed for next-generation Ethernet transmission systems. The receiver incorporates a limiting amplifier and loss-of-signal (LOS) circuit. The limiting amplifier features dual-path architecture optimizing the performance for signals up to 4.25Gbps and up to 11.3Gbps, respectively. The transmitter incorporates Maxim's proprietary DC-coupled laser driver interface and closed-loop control of laser average power. This part is optimized to enable 0.8W maximum power dissipation target of SFP+ MSA based modules.

The MAX3956 supports differential AC-coupled signaling with 50Ω termination at Rx input, Rx output, and Tx input. The Tx output is a DC-coupled 25Ω laser diode interface with dedicated pins for the laser anode (TOUTA) and the laser cathode (TOUTC).

An integrated 12-bit analog-to-digital converter (ADC) is utilized to provide digital monitors of internal/external temperature, V_{CC} , and received signal strength indication (RSSI). The MAX3956's digital monitors and the use of a 2-wire or 3-wire slave interface enables configuration through a digital-only microcontroller (μ C).

The MAX3956 operates from a single +3.3V supply and over a -40°C to +95°C temperature range and is available in a standard 5mm x 5mm, 32-pin TQFN-EP package.

Applications

10GBASE-LR SFP+ Optical Transceivers

Ordering Information appears at end of data sheet.

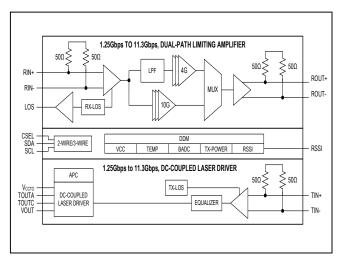
Benefits and Features

Low Power Consumption

- Enables < 0.8W Total SFP+ Module Power Dissipation
- 380mW Typical IC Power Dissipation at 3.3V (I_{LD MOD} = 45mA, I_{BIAS} = 45mA)

Flexibility

- Multirate up to 11.3Gbps (NRZ) Operation with Rate Select for 1.25Gbps to 4.25Gbps Operation
- Programmable Laser-Diode Modulation Current from 10mA to 85mA
- Programmable Tx Input Equalization and Rx Output Deemphasis


Safety and Monitoring

- Integrated Eye Safety Features with Maskable Fault and Interrupt Signal Generation
- Analog Monitors with Integrated 12-Bit ADC, Fully Supporting SFF-8472 DDM

Accurate Analog Measurements

- High-Accuracy Temperature, V_{CC}, and RSSI Sensors
- Enables Use of Simple Digital-Only μC

Simplified Block Diagram

Absolute Maximum Ratings

Voltage at V _{CCX} , V _{CCRO} , V _{CCT} , V _{CCTO}	0.3V to 4.0V
Voltage at REGFILT	
Current into V _{CCTO}	15mA to +180mA
Current into REGFILT	15mA to +15mA
Current into TOUTA and TOUTC	+150mA
Current into VOUT	2mA to +90mA
Current into TIN+, TIN-, RIN+, and RIN	15mA to +15mA
Current into ROUT+ and ROUT	30mA to +30mA
Voltage at TIN+, TIN-, RIN+, RIN-, LOS,	
DISABLE, FAULT, MDIN,	
RSSI, SCL, SDA, INTRPT, and CSEL -0.	.3V to $(V_{CCX} + 0.3V)$

Voltage at TSNS, TGND	0.3V to 1.2V
Voltage at BADC, I.C.	0.3V to 2V
Voltage at TOUTA(V _{CCTO} - 1.3V) to	
Voltage at TOUTC and VOUT0.3V to	to (V _{CCTO} - 0.4V)
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
TQFN (derate 34.5mW/°C above +70°C)	2759mW
Junction Temperature	+150°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TQFN

Junction-to-Ambient Thermal Resistance (θ_{JA}).......29°C/W Junction-to-Case Thermal Resistance (θ_{JC})........1.7°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(V_{CCX} = V_{CCRO} = V_{CCT} = 2.85V \text{ to } 3.47V, V_{CCTO} = 2.97V \text{ to } 3.47V, V_{GND} = 0V, T_A = -40^{\circ}\text{C}$ to +95°C. Typical values are at $V_{CCX} = V_{CCRO} = V_{CCTO} = 3.3V$, 14Ω single-ended load for TOUTC/TOUTA, and $T_A = +25^{\circ}\text{C}$, unless otherwise noted. See Figure 1 for electrical setup.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Supply Current	I _{CC}	Excludes current through TOUTC and TOUTA; I_{LD_MOD} = 60mA, I_{LD_DC} = 40mA, and SET_CML[4:0] = 3d		105	130	mA
Power-On-Reset (Enable Part)	V _{POR_DE}			2.5		V
Power-On-Reset (Disable Part)	V _{POR_AS}			2.4		V
RX INPUT SPECIFICATION						
Input Sensitivity for BER < 10 ⁻¹²	V _{RIN_MIN}	2 ³¹ -1 PRBS at 11.3Gbps		3		mV_{P-P}
Differential Input Resistance	R _{RIN}			100		Ω
RX OUTPUT SPECIFICATION (S	SET_RXDE[2:0] =	0xx)				
Differential Output Voltage Programming Range	V _{ROUT}	See Table 7 for more information	450		800	mV _{P-P}
Differential Output Voltage when Squelched	V _{ROUT}	SQ_EN = 1		5		mV _{P-P}
Differential Output Resistance	R _{ROUT}			100		Ω

Electrical Characteristics (continued)

 $(V_{CCX} = V_{CCRO} = V_{CCT} = 2.85V \text{ to } 3.47V, V_{CCTO} = 2.97V \text{ to } 3.47V, V_{GND} = 0V, T_A = -40^{\circ}\text{C}$ to +95°C. Typical values are at $V_{CCX} = V_{CCRO} = V_{CCT} = V_{CCTO} = 3.3V$, 14Ω single-ended load for TOUTC/TOUTA, and $T_A = +25^{\circ}\text{C}$, unless otherwise noted. See Figure 1 for electrical setup.) (Note 2)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS	
5		10.3Gbps (Notes 3,	4, and 5)		4.6	10		
Deterministic Jitter	DJ	11.3Gbps (Notes 3,	11.3Gbps (Notes 3, 4, and 5)		5.6	11	ps _{P-P}	
Random Jitter	RJ	V _{RIN} = 60mV _{P-P} at 11111 00000 patterr 10d (Note 3)			0.25	0.4	ps _{RMS}	
ROUT Rise/Fall Time	t _R /t _F	20% to 80%, RSEL (Notes 3 and 5) 111			27	35	ps	
RX OMA BASED LOSS-OF-SIG	NAL (LOS) SPEC	IFICATION (Notes 3	and 7)				•	
Assert/Deassert Time		(Note 6)		2.3		80	μs	
1001 10 10		SET_LOS[6:0]	Assert level	6	10	16	.,	
LOS Low Level Setting		= 8d	Deassert level	12	16.7	23	mV _{P-P}	
1.00.11		SET_LOS[6:0] =	Assert level		48		.,	
LOS Medium Level Setting		38d	Deassert level		78		mV _{P-P}	
1001511 10 15		SET_LOS[6:0] = /	Assert level		121		.,	
LOS High Level Setting		101d	Deassert level		197		- mV _{P-P}	
LOS Output Masking Time		LOS_MASKTIME = 0d			0			
Range		LOS_MASKTIME = 127d			4.6		ms	
LOS Output Masking Time Setting Resolution		(Note 8)			36		μs	
TX INPUT SPECIFICATION							1	
Differential Input Resistance	R _{TIN}				100		Ω	
LASER DC CURRENT GENERA	TOR (Note 9)							
Maximum DC-ON Current	I _{DC_MAX}	Current into VOUT	oin	57			mA	
Minimum DC-ON Current	I _{DC_MIN}	Current into VOUT	oin		0.7	1	mA	
Maximum DC-OFF Current	I _{DC_OFF}	Laser current into V Tx output disabled	OUT pin when			0.1	mA	
LASER MODULATOR OUTPUT	$(TX_EQ[1:0] = 00$	0) (Note 10)						
Maximum Modulation ON- Current	ILD_MOD_MAX	Current into TOUTC, external 10Ω differential load		85			mA	
Minimum Modulation ON- Current	ILD_MOD_MIN	Current into TOUTC, external 10Ω differential load				10	mA	
Modulation Output Termination	R _{TOUT}	Single-ended resistance			25		Ω	
Maximum Modulation OFF- Current	I _{LD_MOD_OFF}	Current into TOUTC pin when Tx output disabled				0.1	mA	
Modulation Current DAC Stability		10mA < I _{LD_MOD} < and 11)	85mA (Notes 3		1.5	4	%	

Electrical Characteristics (continued)

 $(V_{CCX} = V_{CCRO} = V_{CCT} = 2.85V \text{ to } 3.47V, V_{CCTO} = 2.97V \text{ to } 3.47V, V_{GND} = 0V, T_A = -40^{\circ}\text{C}$ to +95°C. Typical values are at $V_{CCX} = V_{CCRO} = V_{CCT} = V_{CCTO} = 3.3V$, 14Ω single-ended load for TOUTC/TOUTA, and $T_A = +25^{\circ}\text{C}$, unless otherwise noted. See Figure 1 for electrical setup.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LASER MODULATOR OUTPUT (Notes 3 and 4)	T (TX_EQ[1:0] = 00	0, 10mA < I _{LD_MOD} < 85mA, V _{TIN} = 150 t	to 1000m	V _{P-P} diffe	ential an	nplitude)
Modulation Current Rise/Fall Time	t _R /t _F	20% to 80%, 11111 00000 pattern		24	35	ps
Deterministic litter	DI	10.3Gbps		5	11	
Deterministic Jitter	DJ	11.3Gbps		5	11	ps _{P-P}
Random Jitter	RJ	11111 00000 pattern		0.23	0.55	ps _{RMS}
APC LOOP OPERATION SPEC	IFICATION					
MD Average Current Range	IMDIN_AVG	Average current sunk from MDIN pin	50		2000	μA
Initialization Time	t_init	I _{DC} = 40mA, I _{MOD} = 60mA, I _{DC_init} = 0mA, ER = 9dB, time from restart to I _{DC} and I _{MOD} at 90% of steady state		0.1		ms
TIMING REQUIREMENTS (Note	e 3)					
DISABLE Assert Time	t_off	Time from rising edge of DISABLE input signal to 10% of I _{DC} and I _{MOD}		1.5	10	μs
DISABLE Negate Time	t_on	Time from falling edge of DISABLE to I _{DC} and I _{LD_MOD} at 90% of steady state when FAULT = low before reset		8		μs
FAULT Reset Time	t_recovery	Time from negation of latched fault using DISABLE to I _{LD_MOD} + I _{DC} at 90% of steady state	DISABLE to I _{LD MOD} + I _{DC} at 8			μs
FAULT Assert Time	t_fault	Time from fault to TX_FAULT = high, $C_{FAULT} \le 20pF$, $R_{FAULT} = 4.7k\Omega$		1	3	μs
DISABLE to Reset Time		Time DISABLE must be held high to reset fault	4			μs
SAFETY FEATURES						
Fault Assert Threshold at VOUT		FAULT always occurs for VOUT < V _{CCTO} - 2.8V		V _{CCTO} - 2.8V		V
Fault Deassert Threshold at VOUT		FAULT never occurs for VOUT ≥ V _{CCTO} - 2.0V		V _{CCTO} - 2.0V		٧
Fault Assert Threshold at TOUTC		FAULT always occurs for V _{TOUTC} < 0.24V		0.24		V
Fault Deassert Threshold at TOUTC		FAULT never occurs for V _{TOUTC} ≥ 0.58V		0.58		V
Fault Threshold at TOUTA		FAULT always occurs for V _{TOUTA} < V _{CCTO} - 1.85V		V _{CCTO} - 1.85V		V

Electrical Characteristics (continued)

 $(V_{CCX} = V_{CCRO} = V_{CCT} = 2.85V \text{ to } 3.47V, V_{CCTO} = 2.97V \text{ to } 3.47V, V_{GND} = 0V, T_A = -40^{\circ}\text{C}$ to +95°C. Typical values are at $V_{CCX} = V_{CCRO} = V_{CCT} = V_{CCTO} = 3.3V$, 14Ω single-ended load for TOUTC/TOUTA, and $T_A = +25^{\circ}\text{C}$, unless otherwise noted. See Figure 1 for electrical setup.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Fault Deassert Threshold at TOUTA		FAULT never occurs for V _{TOUTA} ≥ V _{CCTO} - 1.34V		V _{CCTO} - 1.34V		V
RSSI MONITOR						
ADC Resolution				16		bits
LSb Size				35.5		nA
RSSI Input Current Range			1		2000	μA
RSSI Offset Current				50		nA
RSSI Offset Current Stability		(Notes 3 and 12)	-120		+150	nA
RSSI Gain Error		(Note 3)	-4		+4	%
TX POWER MONITOR						
Tx Power Monitor Accuracy		Average current into MDIN pin 50µA < I _{MDIN_AVG} < 2mA, excluding tracking error (Note 3)	-25		+25	%
BADC MONITOR						
Gain Error			-2		+2	%
ADC Full Scale				1.164		V
ADC Resolution				12		bits
ADC LSB Size				284		μV
SUPPLY VOLTAGE MONITOR (V _{CCX} , V _{CCRO} , a	nd V _{CCT})				
Supply Voltage Monitor Accuracy		V _{CCX} = V _{CCRO} = V _{CCT} > V _{POR_DE}	-2		+2	%
ADC Resolution				12		bits
ADC LSb Size				1.137		mV
TEMPERATURE SENSOR						
External Temperature Sensor Accuracy		Measured with a single PNP device (Note 3)	-2		+2	°C
DIGITAL INPUTS (SDA, SCL, CS	SEL, DISABLE,	RSEL)	ı			
Minimum Input Voltage High	V _{IH}			1.6		V
Maximum Input Voltage High	V _{IH}			V _{CC}		V
Minimum Input Voltage Low	V _{IL}			0		V

Electrical Characteristics (continued)

 $(V_{CCX} = V_{CCRO} = V_{CCT} = 2.85V \text{ to } 3.47V, V_{CCTO} = 2.97V \text{ to } 3.47V, V_{GND} = 0V, T_A = -40^{\circ}\text{C}$ to +95°C. Typical values are at $V_{CCX} = V_{CCRO} = V_{CCT} = V_{CCTO} = 3.3V$, 14Ω single-ended load for TOUTC/TOUTA, and $T_A = +25^{\circ}\text{C}$, unless otherwise noted. See Figure 1 for electrical setup.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Input Voltage Low	V _{IL}			0.8		V
Input Hysteresis	V _{HYS}			80		mV
Input Leakage Current High (SDA, DISABLE)	I _{IH}	Input connected to V _{CCRO}	-10		+10	μA
Input Leakage Current High (SCL, CSEL, RSEL)	I _{IH}	Input connected to V_{CCRO} , internal 75k Ω pulldown	20	44	100	μA
Input Leakage Current Low (SCL, CSEL, RSEL)	I _{IL}	Input connected to GND	-10		+10	μA
Input Leakage Current Low (SDA)	I _{IL}	Input connected to GND, internal 75kΩ pullup	20	44	100	μA
Input Leakage Current Low (DISABLE)	I _{IL}	Input connected to GND, internal 7.5kΩ pullup	200	450	800	μA
DIGITAL OPEN-DRAIN OUTPUT	(SDA, LOS, and	FAULT) (Note 14)				
Output Low Voltage	V _{OL}	External pullup is between 4.7k Ω and 10k Ω to V _{CCRO}			0.4	V
Output High Voltage	V _{OH}	External pullup is between 4.7k Ω and 10k Ω to V _{CCRO}	V _{CCRO}	V _{CCRO}		V
DIGITAL CMOS OUTPUT (INTRI	PT, LOS, and FA	ULT) (Note 14)	•			
Output Low Voltage	V _{OL}	I _{OL} = 1mA			0.4	V
Output High Voltage	V_{OH}	I _{OH} = 1mA	V _{CCRO} - 0.4			V
3-WIRE TIMING SPECIFICATION	NS (Figure 3)					
Maximum SCL Clock Frequency	fscl			1000		kHz
Minimum SCL Pulse Width High	t _{CH}			500		ns
Minimum SCL Pulse Width Low	t _{CL}			500		ns
SDA Setup Time	t _{DS}			100		ns
SDA Hold Time	t _{DH}			100		ns
SCL Rise to SDA Propagation Time	t _D			12		ns
Minimum CSEL Pulse Width Low	t _{CSW}			500		ns
CSEL Leading Time Before the First SCL Edge	tL			500		ns
CSEL Trailing Time After the Last SCL Edge	t _T			500		ns

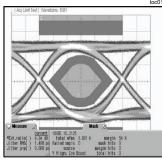
Electrical Characteristics (continued)

 $(V_{CCX} = V_{CCRO} = V_{CCT} = 2.85V \text{ to } 3.47V, V_{CCTO} = 2.97V \text{ to } 3.47V, V_{GND} = 0V, T_A = -40^{\circ}\text{C} \text{ to } +95^{\circ}\text{C}$. Typical values are at $V_{CCX} = V_{CCRO} = V_{CCT} = V_{CCTO} = 3.3V$, 14Ω single-ended load for TOUTC/TOUTA, and $T_A = +25^{\circ}\text{C}$, unless otherwise noted. See Figure 1 for electrical setup.) (Note 2)

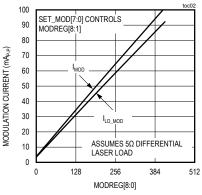
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Capacitive Load SDA, SCL	C _b	Total bus capacitance on one line with $4.7 k\Omega$ pullup from SDA to V_{CC}		20		pF
2-WIRE TIMING SPECIFICATION	NS (Figure 5)					
Maximum SCL Clock Frequency	fSCL			400		kHz
Minimum SCL Pulse Width High	t _{CH}			1.3		μs
Minimum SCL Pulse Width Low	t _{CL}			0.6		μs
Minimum Bus Free Time Between STOP and START Condition	t _{BUF}			1.3		μs
Minimum STOP Setup Time	tsu_sto			600		ns
Minimum START Setup Time	tsu_sta			600		ns
Minimum START Hold Time	t _{HD_STA}			600		ns
Minimum SDA Setup Time	t _{HD_DAT}			100		ns
Minimum SDA Hold Time		Receive		0		
Minimum SDA Hold Time	thd_dat	Transmit	300			ns
Minimum SCL and SDA Rise and Fall Time	t _R , t _F	(Note 15)		20 + 0.1C _b		ns
Maximum Spike Pulse Width Suppressed by Input Filter	t _{SP}			50		ns
Maximum Capacitive Load SDA, SCL	C _b	Total bus capacitance on one line		20		pF

- **Note 2:** Limits are 100% tested at $T_A = +25^{\circ}C$ (and/or $T_A = +95^{\circ}C$). Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.
- Note 3: Guaranteed by design and characterization.
- **Note 4:** A repeating 2⁷ PRBS + 72 zeros and 2⁷ PRBS (inverted) + 72 ones pattern is used. Deterministic jitter is defined as the arithmetic sum of pulse-width distortion (PWD) and pattern-dependent jitter (PDJ). Source DJ is removed from the measurement.
- Note 5: V_{RIN} is $30mV_{P-P}$ to $1.2V_{P-P}$ differential amplitude, SET_CML = 10d. Input data transition time 21ps (20% to 80%).
- Note 6: LOS must not assert if the input data is invalid for less than 2.3µs. The LOS must assert, if the data is invalid for more than 80µs. The signal at the input will be switched between two amplitudes Signal ON, and Signal OFF.
 - 1) Receiver operates at sensitivity level plus 1dB power penalty
 - A) Signal_OFF = 0; Signal_ON = (+8dB) + 10log(min_assert_level)
 - B) Signal_ON = (+1dB) + 10log(max_deassert_level); Signal_OFF = 0
 - 2) Receiver operates at overload
 - Signal_OFF = 0; Signal_ON = $1.2V_{P-P}$
- Note 7: LOS hysteresis (10 × Log(V_{LOS-DEASSERT}/V_{LOS-ASSERT})dB) is designed to be > 1.25dB for SET_LOS[6:0] DAC code from 8d to 101d. LOS is characterized with a 2²³-1 PRBS pattern for 11.3Gbps and a K28.5 pattern for 1.25Gbps operation
- Note 8: Output of a TIA in case of loss of light, see Figure 7.
- Note 9: $I_{LD_DC} = I_{DC} + 0.5 \times I_{MOD} \times R/(50 + R)$, where I_{LD_DC} is the effective laser DC current, I_{DC} is the DC DAC current, I_{MOD} is the modulation DAC current, and R is the differential laser load resistance. Example: For R = 5Ω , $I_{LD_DC} = I_{DC} + 0.045 \times I_{MOD}$. The required compliance range for VOUT, while Tx output is enabled, is $V_{CCTO} 1V$ to $V_{CCTO} 2V$.

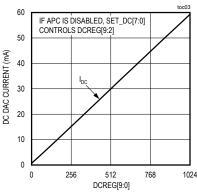
Electrical Characteristics (continued)

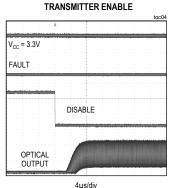

 $(V_{CCX} = V_{CCRO} = V_{CCT} = 2.85V \text{ to } 3.47V, V_{CCTO} = 2.97V \text{ to } 3.47V, V_{GND} = 0V, T_A = -40^{\circ}\text{C} \text{ to } +95^{\circ}\text{C}$. Typical values are at $V_{CCX} = V_{CCX} = V_$ $V_{CCRO} = V_{CCT} = V_{CCTO} = 3.3V$, 14Ω single-ended load for TOUTC/TOUTA, and $T_A = +25$ °C, unless otherwise noted. See Figure 1 for electrical setup.) (Note 2)

- Note 10: $I_{LD\ MOD} = I_{MOD} \times 50/(50 + R)$, where $I_{LD\ MOD}$ is the effective laser modulation current, I_{MOD} is the modulation DAC current, and R is the differential laser load resistance. Example: For R = 5Ω , $I_{LD\ MOD}$ = $0.91 \times I_{MOD}$.
- Note 11: Stability is defined as [(I_{MEASURED}) (I_{REFERENCE})]/(I_{REFERENCE}) over the listed current/temperature range and V_{CCT} = V_{CCX} = V_{CCRO} = V_{CCREF} ±5%, V_{CCREF} = 3.3V. Reference current measured at V_{CCREF} and T_{REF} = +25°C.
- Note 12: Stability is defined as [(I_{MEASURED}) (I_{REFERENCE}) over the listed temperature range and supply range. Reference current measured at V_{CC} = 3.3V and T_{REF} = +25°C.
- Note 13:Calibrated at room temperature by adjusting TSNS_INT_OFS[15:0] (TSNS_INT_SCL[15:0] unchanged from default value). In order to reduce the effect of self-heating the Rx and Tx circuitry are disabled. To minimize the reported error over the full temperature range, calibration is set such that the reported result is 2°C above ambient at room temperature. In the application, self-heating may introduce additional variation.
- Note 14: For open-drain configuration FAULT_PU_EN = 0 and LOS_PU_EN = 0. For CMOS output configuration FAULT_PU_EN = 0 1 and LOS_PU_EN = 1.
- **Note 15:** C_b = total capacitance of one bus line in pF.

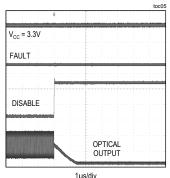

Typical Operating Characteristics

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, data pattern 2^{31}-1 PRBS, unless otherwise noted.)$

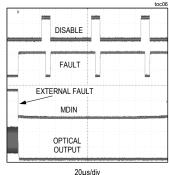

10Gbps OPTICAL EYE DIAGRAM



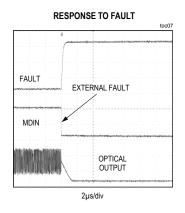
MODULATION CURRENT vs. MODREG

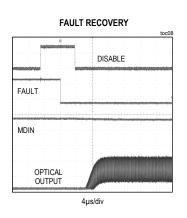


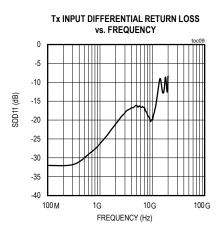
DC DAC CURRENT vs. DCREG

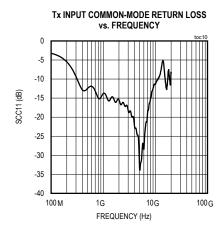


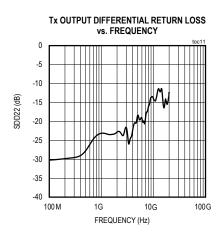
TRANSMITTER DISABLE

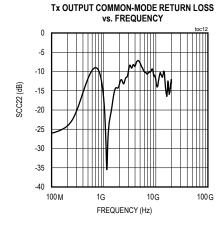


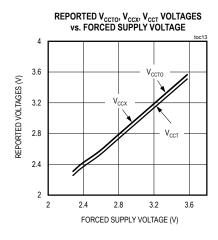

FREQUENT ASSERTION OF DISABLE

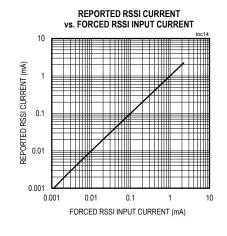


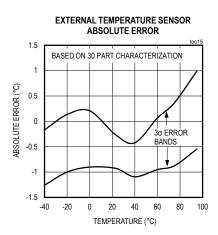

Typical Operating Characteristics (continued)

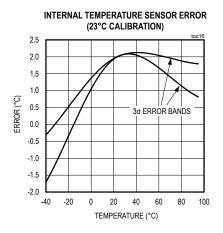

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, data pattern 2^{31}-1 PRBS, unless otherwise noted.)$

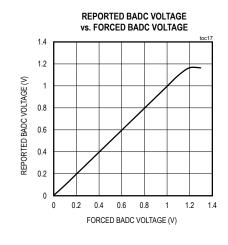


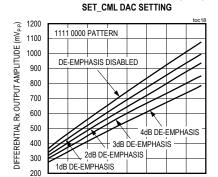






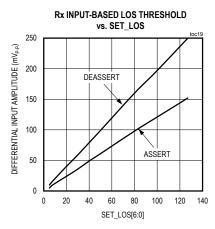


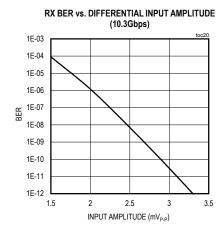


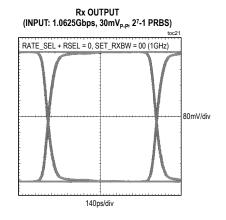


Typical Operating Characteristics (continued)

(V_{CC} = 3.3V, T_A = +25°C, data pattern 2³¹-1 PRBS, unless otherwise noted.)






12 16 20 SET_CML[4:0]

0

DIFFERENTIAL Rx OUTPUT AMPLITUDE vs.

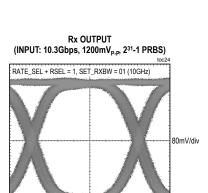
Typical Operating Characteristics (continued)

Rx OUTPUT

(V_{CC} = 3.3V, T_A = +25°C, data pattern 2³¹-1 PRBS, unless otherwise noted.)

(INPUT: 4.25Gbps, 30mV_{P-P}, 2⁷-1 PRBS)
toc22

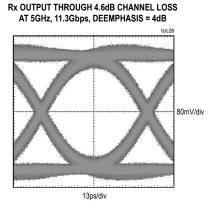
RATE_SET + RSEL = 0, SET_RXBW = 11 (3GHz)

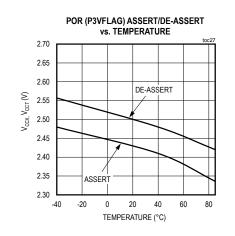

80mV/div

Rx OUTPUT
(INPUT: 10.3Gbps, 30mV_{P.P}, 2³¹-1 PRBS)
toc23

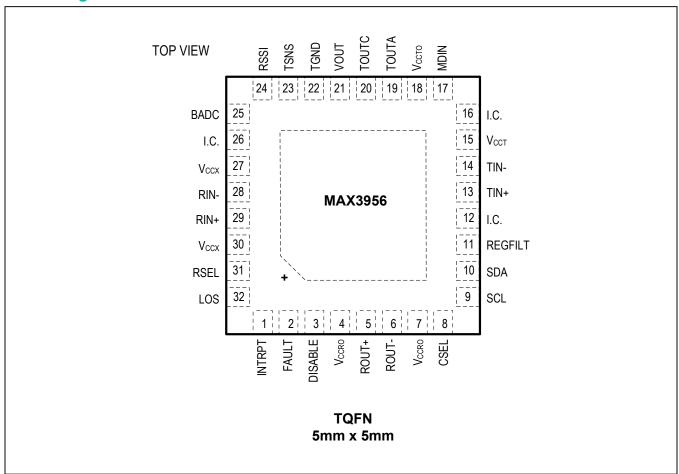
RATE_SET + RSEL = 1, SET_RXBW = 01 (10GHz)

80mV/div


15ps/div



15ps/div


35ps/div

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT
1	INTRPT	Interrupt Output, CMOS. Programmable interrupt signal.	MAX3956 VCCRO INTRPT ESD PROTECTION

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT
2	FAULT	Transmitter Fault, Open-Drain Output. A logic-high indicates a fault condition has been detected. It remains high even after the fault condition has been removed. A logic-low occurs when the fault condition has been removed and the fault latch has been cleared by the DISABLE signal. Connect FAULT to host V_{CC} via a 4.7k Ω to $10k\Omega$ resistor. FAULT can also be configured as a CMOS output requiring no external resistor by setting the FAULT_PU_EN bit high.	MAX3956 Vccro PROTECTION FAULT_PU_EN FAULT S
3	DISABLE	Transmitter Disable, LVTTL/CMOS input. Set to logic-low for normal operation. Logic-high or open disables both the modulation and DC current. Internally pulled up by a $7.5 \mathrm{k}\Omega$ resistor to V_{CCRO} .	MAX3956 VCCRO VCCRO
4, 7	V _{CCRO}	Power Supply. Provides supply voltage to the transceiver digital core and the Rx output circuitry.	_
5	ROUT+	Differential Receiver Data Output, CML.	SSD PROTECTION 50Ω SOΩ FOUT+ ROUT+ ROUT-
6	ROUT-	This output has 50Ω terminations to V_{CCRO} . Polarity is set by the RX_POL bit.	SET_CML MAX3956

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT
8	CSEL	Chip-Select Input, CMOS. Used for 3-Wire communication. Setting CSEL to logic-high starts a cycle. Setting CSEL to logic-low ends the cycle and resets the control state machine. Internally pulled to ground by a $75 \mathrm{k}\Omega$ resistor. Set low if using 2-wire communication.	MAX3956 V _{CCRO} V _{CCRO} 75kΩ ESD PROTECTION (S)
9	SCL	Serial-Clock Input, CMOS. Internally pulled to ground by a 75k Ω resistor.	MAX3956 V _{CCRO} 75kΩ ESD PROTECTION SCL
10	SDA	Serial-Data Bidirectional I/O, CMOS. Open-drain output. This pin has a $75k\Omega$ internal pullup, but it requires an external $4.7k\Omega$ to $10k\Omega$ pullup to meet 3-wire timing specifications.	MAX3956 Vocro 75kΩ Vocro PROTECTION SDA

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT
11	REGFILT	Internal Filter Node. Requires 0.1µF decoupling capacitor to ground.	_
12, 16, 26	I.C.	Internal Connection. Leave unconnected.	_
13	TIN+	Differential Transmitter Data Input. The	V _{CCT} - 1V MAX3956 50Ω 50Ω TIN+
14	TIN-	polarity is set by the TX_POL bit.	TIN- ESD PROTECTION — S
15	V _{CCT}	Power Supply. Provides supply voltage to the transmitter core.	_
17	MDIN	Monitor Diode Input. Connect this pin to the cathode of the monitor diode. For transmitter power monitoring MDIN needs to be connected even for open-loop operation. External filtering on this pin should be optimized for each TOSA configuration. The Thevenin equivalent input of this pin is 40Ω to V_{CCT} - 1.25V.	

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT
18	V _{ССТО}	Power Supply. Provides power to the transmitter output and laser TOSA.	MAX3956 250
19	TOUTA	Inverting Modulator Current Output with 25Ω back-termination. Connect to laser anode through 25Ω transmission line.	CASCODE TOUTA TOUTC VOUT ESD
20	TOUTC	Noninverting Modulator Current Output with 25 Ω back-termination. Connect to laser cathode through 25 Ω transmission line.	PROTECTION
21	V _{ОИТ}	Combined laser cathode current return path and sinking laser DC current output.	MAX3956 Vocto Vout
22	TGND	Connect to an external temperature sensor (cathode).	MAX3956 Vccx S TOUG
23	TSNS	Connect to an external temperature sensor (anode).	TSNS TGND ESD PROTECTION = =

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT	
24	RSSI	Current input to main ADC for receivesignal-strength-indication (RSSI). The voltage at this pin is regulated internally to 1.62V.	RSSI MAX3956 ESD PROTECTION 1.62V	
25	BADC	Auxiliary ADC Input (≈ 1.16V full scale)	_	
27, 30	V _{CCX}	Power Supply. Provides supply voltage to the receiver core.	_	
28	RIN-	Differential Receiver Data Input. Contains 50Ω terminations on-chip. Connect these	V _{CCX} V _{CCX} - 0.1V MAX3956 S0Ω 50Ω 50Ω 7	
29	RIN+	inputs to the TIA outputs using coupling capacitors.	RIN- ESD PROTECTION = = = -	

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT
31	RSEL	Rate Select, CMOS Input. Internally pulled to ground by a 75kΩ resistor. Pin is internally OR'ed with RATE_SEL bit. The output of the OR sets the Rx circuitry path to 10G for logic 1, 4G for logic 0.	RSEL VCCRO MAX3956 75kΩ ESD PROTECTION S
32	LOS	Receiver Loss-of-Signal (LOS) Output, Open Drain. This output goes to a logichigh when the level of the input signal drops below the SET_LOS register threshold. Polarity is set by LOS_POL register. The LOS circuitry can be disabled by setting LOS_EN = 0. Pull this pin to Host V_{CC} via a 4.7k Ω to 10k Ω resistor. LOS can also be configured as a CMOS output requiring no external resistor by setting the LOS_PU_EN bit high.	MAX3956 VCCRO PROTECTION LOS_PU_EN LOS_PU_EN LOS
_	EP	Exposed Pad. Ground. This is the only electrical connection to ground and must be soldered to circuit board ground for proper thermal and electrical performance (see the Exposed-Pad Package and Thermal Considerations section).	_

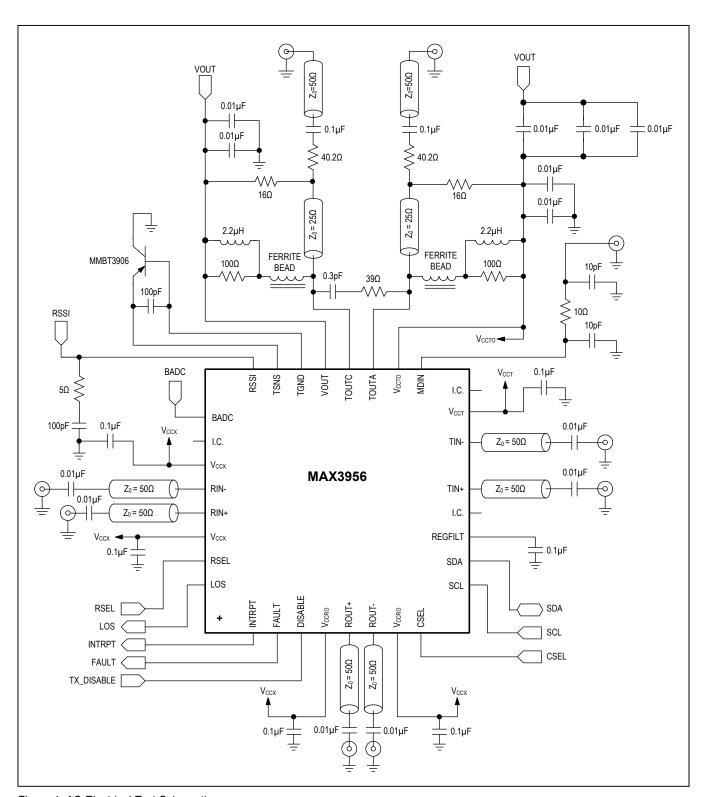


Figure 1. AC Electrical Test Schematic

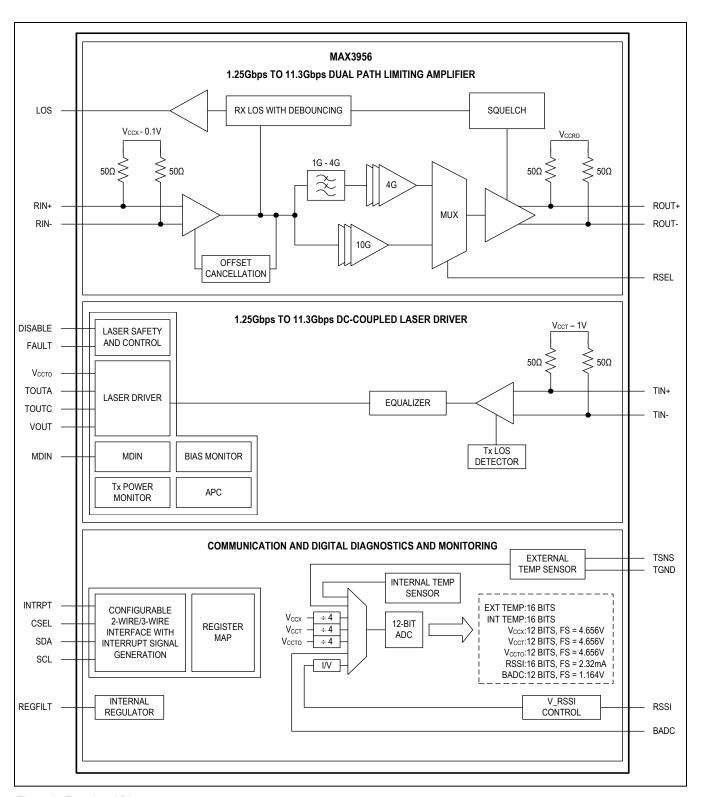


Figure 2. Functional Diagram

Detailed Description

The MAX3956 combines a high-gain limiting amplifier, laser driver, and digital diagnostics monitoring (DDM). The limiting amplifier includes offset cancellation, programmable signal detect threshold, selectable bandwidth, and deemphasis. The laser driver includes automatic power-control (APC), laser current and power measurement capability, overcurrent limiting, and fault detection. A serial control interface enables an external controller to set all parameters necessary for operation and read all monitors and status indicators. The interface accepts either 2-wire or 3-wire protocol.

The features and performance are specifically designed to be compatible with low-cost microcontrollers to provide complete SFF-8472 functionality, including laser fault detection, diagnostics, and automatic power control. The MAX3956 includes all the logic required for laser protection, control loop operation, and monitor diode (MD) current measurement.

1.25Gbps to 11.3Gbps Limiting Amplifier Block Description

Limiting Amplifier

The limiting amplifier consists of a multistage-multipath amplifier, offset-correction circuit, loss-of-signal circuit, and output buffer. Its low noise and high gain optimize optical performance. Configuration options (LOS threshold, LOS polarity, output amplitude, output deemphasis, and data polarity) enhance layout flexibility and ROSA compatibility.

High-Speed Input Signal Path

The inputs, RIN±, have an internal 100Ω differential termination and should be AC-coupled to the transimpedance amplifier.

Offset Cancellation

The offset cancellation loop compensates for pulse-width distortion at RIN± and internal offsets. The default small-signal low-frequency cutoff of the offset cancellation loop is 10kHz when AZ BW[1:0] is set to 01.

Loss-of-Signal Circuitry (LOS)

The loss-of-signal circuitry detects the amplitude of the incoming signal and compares it against a programmable threshold, which is controlled by SET_LOS[6:0]. The range of LOS assert is $10mV_{P-P}$ to $121mV_{P-P}$. Changing the LOS threshold during operation (i.e., without executing a reset) does not cause a glitch or incorrect LOS output. The detector has 2dB of hysteresis to control chatter

at the LOS output. The LOS output polarity is controlled by the LOS_POL bit. The entire LOS circuit block can be disabled by setting LOS EN = 0.

Output Drivers

The ROUT± outputs are terminated with 50Ω to V_{CCRO} . The differential output level can be programmed between $400\text{mV}_{P\text{-}P}$ and $1000\text{mV}_{P\text{-}P}$ by the SET_CML[4:0], and the output polarity can be inverted. The output can be disabled to its common-mode voltage either manually or automatically by an LOS condition (squelch through the SQ EN bit).

Deemphasis may be enabled to compensate for FR4 losses with a 10Gbps signal. If enabled, settings of 1dB, 2dB, 3dB, and 4dB deemphasis are available.

1.25Gbps to 11.3Gbps Laser Driver Block Description

The laser driver consists of a high-speed differential input buffer, selectable input equalizer, polarity switch buffer, laser modulator and DC current generator, monitor diode input buffer with adjustable gain, APC loop circuitry, eyesafety monitors, and DISABLE pin.

Differential High-Speed Input Buffer with Programmable Equalization

The TIN \pm inputs are internally biased and have a 100 Ω differential termination. The first amplifier stage features a programmable equalizer, controlled by TX_EQ, to compensate for high-frequency losses including the SFP connector. The TX_POL bit controls the signal path polarity. An active AC input signal is indicated by TIN_LOS.

Laser Modulator and DC Generator

The laser modulator provides DC-coupled current into the cathode of the laser diode at the TOUTC pin. The modulation current amplitude is set by MODREG[8:0]. The modulation current DAC guarantees modulation amplitudes up to 85mA. The instantaneous compliance voltage for TOUTC is 0.6V to V_{CCTO} - 1V and for TOUTA is V_{CCTO} ±1V.

The VOUT pin sinks DC current from the laser's cathode. The amplitude of the laser DC current is controlled by DCREG[9:0]. The laser DC current DAC guarantees values up to 57mA.

Monitor Diode Current Input Buffer

The MDIN input stage has adjustable gain settings, allowing a large input signal range. The MDIN_GAIN[2:0] bits set the transimpedance gain from 156 Ω to 2496 Ω in one octave steps.

Automatic Power Control Circuitry (APC)

The MAX3956 contains circuitry to maintain constant optical power using feedback from the monitor diode. The SET_APC register in conjuction with MDIN_GAIN controls the set point for average laser power when APC operation is enabled.

DDM

Digital diagnostics and monitoring is provided on the MAX3956. This includes internal and external temperature monitoring, Tx DC current reporting, Tx average current reporting, Tx output power reporting, RSSI, and internal supply voltage monitoring. The MAX3956, when combined with a digital-only μ C, will provide compliance with SFF-8472 (Diagnostic Monitoring Interface for Optical Transceivers).

3-Wire Interface

The MAX3956 implements a proprietary 3-wire digital slave interface. The 3-wire interface consists of an SDA bidirectional data line, an SCL clock signal input, and a CSEL chip-select input (active high). The external master initiates a data transfer by asserting the CSEL pin then generating a clock signal. All data transfers are most significant bit (MSb) first. See Figure 3 for more information.

Protocol

Each single register operation consists of 16-bit transfers (15-bit address/data, 1-bit RWN). The bus master generates 16 clock cycles to SCL. All operations transfer 8 bits

to the MAX3956; the RWN bit determines if the cycle is read or write. See Table 1.

Write Mode (RWN = 0)

Writing to a register requires two transactions: a write of 12h to the MODECTRL register to enter SETUP mode, followed by a write to the target address. For each transaction, the master generates 16 clock cycles at SCL. It outputs a total of 16 bits (MSb first) to the SDA line at the falling edge of the clock. The master closes the transmission by setting CSEL to 0. Figure 3 shows the 3-wire interface timing.

Read Mode (RWN = 1)

The master generates 16 clock cycles at SCL in total. The master outputs a total of 8 bits (MSb first) to the SDA line at the falling edge of the clock. The SDA line is released after the RWN bit has been transmitted. The slave outputs 8 bits of data (MSb first) at the rising edge of the clock. The master closes the transmission by setting CSEL to 0. Figure 3 shows the 3-wire interface timing.

Table 1. 3-Wire Digital Communication Word Structure

BIT	NAME	DESCRIPTION	
15:9 Address		7-Bit Internal Register Address	
8 RWN 0:		0: Write; 1: Read	
7:0 Data 8-		8-Bit Read or Write Data	

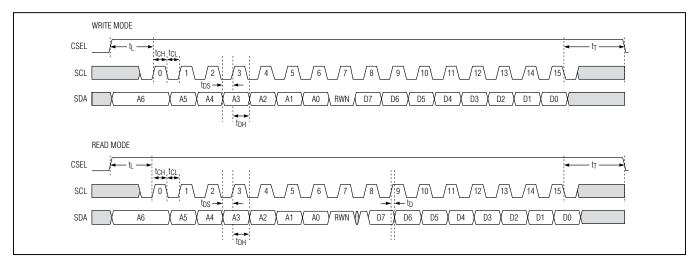


Figure 3. 3-Wire Digital Interface Timing Diagram

Table 2. Block Write Examples

BLOCK WRITE MODE 1 (STARTS AT ADDRESS H0x01)	BLOCK WRITE MODE 2 (STARTS AT ANY ADDRESS)	
Master sets CSEL to 1	Master sets CSEL to 1	
ADDR $H0x00 + RWN = 0$	ADDR H0x00 + RWN = 0	
Data 81h (page 0 access) – or Data 55h (page 1 access)	Data 81h (page 0 access) – or Data 55h (page 1 access)	
Master sets CSEL to 0	Master sets CSEL to 0	
Master sets CSEL to 1	Master sets CSEL to 1	
ADDR $H0x00 + RWN = 0$	ADDR H0x00 + RWN = 0	
Data 12h (setup mode)	Data 12h (setup mode)	
Data 1 (ADDR H0x01)	Master sets CSEL to 0	
Data 2 (ADDR H0x02)	Master sets CSEL to 1	
Data 3 (ADDR H0x03)	ADDR H0x0N + RWN = 0	
	Data 1 (ADDR H0x0N)	
Data j (ADDR H0xj)	Data 2 (ADDR H0x0N + 1)	
Master sets CSEL to 0	Data 3 (ADDR H0x0N + 2)	
_		
_	Data i (ADDR H0xN + i - 1)	
_	Master sets CSEL to 0	

Table 3. MODECTRL Register Settings

CODE (hex)	CONDITION	
00	NORMAL mode	
12	SETUP mode	
55	SELECT PAGE 1 mode	
68	FAULT CLEAR mode	
81	SELECT PAGE 0 mode	

Block Write Mode (RWN = 0)

The two different block write modes of operation are described in Table 2.

Block Read Mode (RWN = 1)

The master initiates the block read mode by accessing any register address and setting the RWN bit to 1. The block read mode starts by stretching the CSEL interval beyond the 16 clock cycles, and it is exited automatically when the master has set CSEL to 0.

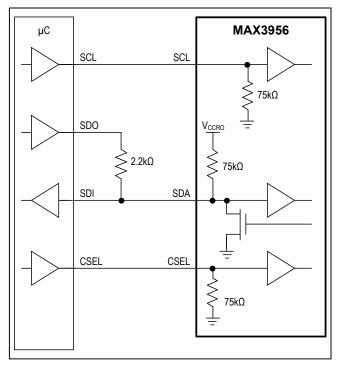


Figure 4. Recommended 3-Wire Implementation Using a Generic Microcontroller

Mode Control

The MAX3956 contains more than 128 registers, which exceeds the addressability of a 7-bit number. So it has two pages (Page 0 and Page 1) that contain all the registers. To write to or read from either page, the page must first be selected by writing to the MODECTRL register: 81h to access page 0, 55h to access page 1. Once a page has been selected any further writes or reads will access that page until the MODECTRL is written to the new page. The default page upon POR is page 1.

Setup mode allows the master to write data into any register except the status registers and read-only registers. To enter the setup mode, 12h is written to the MODECTRL register. The next operation is unrestricted to any writable register. The setup mode is automatically exited after the next operation is finished. This sequence must be repeated if further register writes are necessary.

To speed up the laser control by a factor of 2, the MODINC, DCINC, and APCINC registers can be updated without writing SETUP mode to MODECTRL.

Fault-clear mode allows the clearing of the fault latch, and restarts operation of the device. It is activated by writing 68h to the MODECTRL register.

2-Wire Communication

2-Wire Definition

The following terminology is commonly used to describe 2-Wire data transfers.

Master Device: The master device controls the slave devices on the bus. The master device generates SCL clock pulses and START and STOP conditions.

Slave Devices: Slave devices send and receive data at the master's request.

Bus Idle or Not Busy: Time between STOP and START conditions when both SDA and SCL are inactive and in their logic-high states.

START Condition: A START condition is generated by the master to initiate a new data transfer with a slave. Transitioning SDA from high to low, while SCL remains high, generates a START condition. See Figure 5 for applicable timing.

STOP Condition: A STOP condition is generated by the master to end a data transfer with a slave. Transitioning SDA from low to high, while SCL remains high, generates a STOP condition. See Figure 5 for applicable timing.

Repeated START Condition: The master can use a repeated START condition at the end of one data transfer to indicate that it will immediately initiate a new data transfer following the current one. Repeated STARTs are commonly used during read operations to identify a specific register address to begin a data transfer. A repeated START condition is issued identically to a normal START condition. See Figure 5 for applicable timing.

Bit Write: Transitions of SDA must occur during the low state of SCL. The data on SDA must remain valid and unchanged during the entire high pulse of SCL plus the setup and hold time requirements (Figure 5). Data is shifted into the device during the rising edge of the SCL.

Bit Read: At the end a write operation, the master must release the SDA bus line for the proper amount of setup time before the next rising edge of SCL during a bit read. The device shifts out each bit of data on SDA at the falling edge of the previous SCL pulse and the data bit is valid at the rising edge of the current SCL pulse. Remember that the master generates all SCL clock pulses, including when it is reading bits from the slave.

Acknowledgement (ACK and NACK): An acknowledgement (ACK) or not-acknowledge (NACK) is always the 9th bit transmitted during a byte transfer. The device receiving data (the master during a read or the slave during a write operation) performs an ACK by transmitting a zero during the 9th bit. A device performs a NACK by transmitting a one during the 9th bit. Timing for the ACK and NACK is identical to all other bit writes (Figure 5). An ACK is the acknowledgment that the device is properly receiving data. A NACK is used to terminate a read sequence or as an indication that the device is not receiving data.

Byte Write: A byte write consists of 8 bits of information transferred from the master to the slave (most significant bit first) plus a 1-bit acknowledgement from the slave to the master. The 8 bits transmitted by the master are done according to the bit write definition and the acknowledgement is read using the bit read definition.

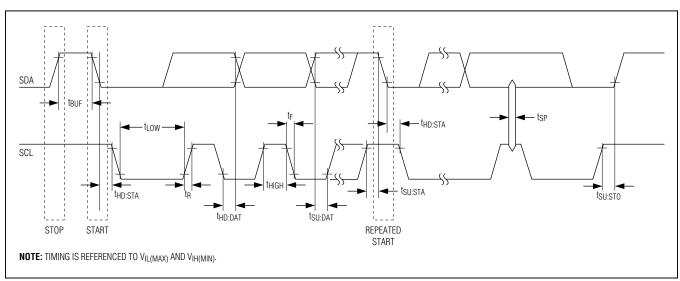


Figure 5. 2-Wire Timing Diagram

Byte Read: A byte read is an 8-bit information transfer from the slave to the master plus a 1-bit ACK or NACK from the master to the slave. The 8 bits of information that are transferred (most significant bit first) from the slave to the master are read by the master using the bit read definition, and the master transmits an ACK using the bit write definition to receive additional data bytes. The master must NACK the last byte read to terminate communication so the slave returns control of SDA to the master.

Slave Address Byte: Each slave on the 2-wire bus responds to a slave address byte sent immediately following a START condition. The slave address byte contains the slave address in the most significant 7 bits and the R/W bit in the least significant bit. The MAX3956 responds to the slave address 46h.

The part contains more than 128 registers, which exceeds the addressability of a 7-bit number. So it has two pages (page 0 and page 1) that contain the registers. To write to or read from either page, the page must first be selected by writing to the MODECTRL register: 81h to access page 0, 55h to access page 1. Once a page has been selected any further writes or reads will access that page until MODECTRL is written with a new page. The default page upon POR is page 1.

2-Wire Protocol

See Figure 6 for an example of 2-wire timing.

Writing a Single Byte to the MAX3956: The master must generate a START condition, write the slave address byte, write $R/\overline{W} = 0$, write the MODECTRL address, write 12h (Setup), and generate a STOP condition. This prepares the MAX3956 for a write. Then the master must generate a START condition, write the slave address byte, write $R/\overline{W} = 0$, write the register address, write the byte of data, and generate a STOP condition. Remember that the master must read the slave's acknowledgement during all byte write operations.

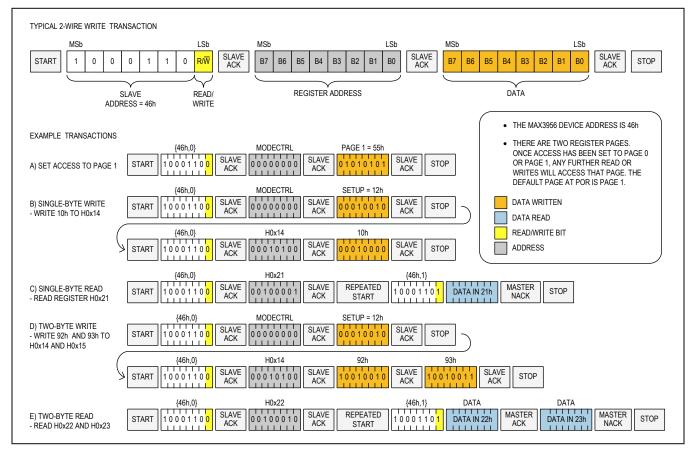


Figure 6. Example 2-Wire Timing

Writing Multiple Bytes to the MAX3956: To write multiple bytes to a slave, the master must generate a START condition, write the slave address byte, write $R/\overline{W}=0$, write the MODECTRL address, write 12h (Setup), and generate a STOP condition. Then the master must generate a START condition, write the slave address byte, write $R/\overline{W}=0$, write the register address, write multiple data bytes, and generate a STOP condition. The device writes multiple bytes with this second write transaction. This is internally controlled by an address counter that allows data to be written to consecutive addresses without transmitting a register address before each data byte is sent. The address counter limits the write to one page.

For example: A 3-byte write starts at address 06h and writes three data bytes (11h, 22h, and 33h) to three consecutive addresses. The result is that addresses H0x06, H0x07, H0x08 would contain 11h and 22h, and 33h respectively.

The APCINC, MODINC, and DCINC registers are the only registers in the device that do not require 12h (Setup) to be written to MODECTRL before writing to these registers. This allows quicker adjustments of these registers.

Writing to the APCINC, MODINC, or DCINC register: The master must generate a START condition, write the slave address byte, write $R/\overline{W} = 0$, write the address, write the byte of data, and generate a STOP condi-

tion. Remember that the master must read the slave's acknowledgement during all byte write operations.

Design Procedure

Load Factory Calibration Constants

Upon power-up, after POR has deasserted, the microcontroller must load the individually programmed calibration constants into the calibration registers. This is accomplished by five write commands shown below:

WRITE: 55h to H0x00 WRITE: 34h to H0x00 WRITE: 01h to H0x7A WRITE: 34h to H0x00 WRITE: 03h to H0x7A

Power-On-Reset (POR)

A power-on-reset circuit provides proper startup sequencing and ensures that the laser is off while the supply voltage is ramping or below a specified threshold (≈ 2.55 V). The serial interface can also be used to command a manual reset at any time by setting SOFT_RESET = 1, which is identical to a power-on reset. When using SOFT_RESET, the MAX3956 transmitter must first be disabled, either by the DISABLE pin, by setting TX_EN = 0, or by setting XCVR_EN = 0. Either power-on or SOFT_RESET requires approximately 150 μ s to complete. POR sets all

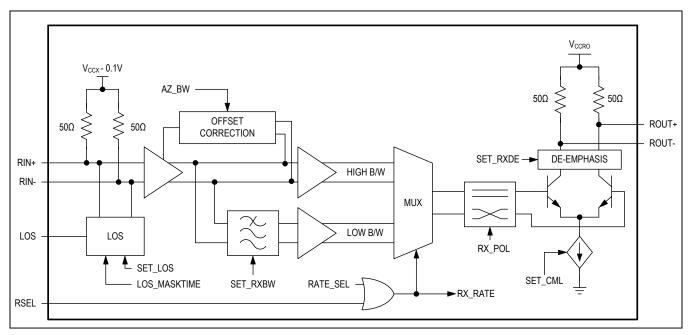


Figure 7. Limiting Amplifier Block Diagram

registers to their defaults. The recommended POR procedure is as follows:

- Because the POR is routed to both the FAULT and INTRPT pins, the μC should monitor one of these for POR detection in the case of a power-supply brownout issue.
- If FAULT is used by the μC to detect a MAX3956 POR event, a pullup resistor should be used on this pin. This is because FAULT defaults to open drain upon POR.
- Upon POR event detection, the controller initiates 2-wire or 3-wire communication with MAX3956 by repeatedly reading out the TOPSTAT register until the 1-to-0 transition occurs for both PORD and P3VFLAG.
- Once the POR flags have cleared, repeatedly read the TXSTAT1 register until the Tx status flags have cleared. Write a fault clear (68h) to the MODECTRL register to clear any startup related faults.
- Controller writes commands to load calibration constants into calibration registers then writes/initializes all applicable registers.

1.25Gbps to 11.3Gbps Receiver Details

Figure 7 is a block diagram of the MAX3956 receiver circuitry. It includes the offset-correction block, LOS block, high-bandwidth/low-bandwidth paths, input and output stages, and output deemphasis.

Offset-Correction Circuitry

The offset-correction circuitry is provided to remove PWD at RIN± and offsets caused by intrinsic mismatch within the amplifier stages. The bandwidth of the offset-correction loop is adjustable and is set by AZ_BW[1:0]. Table 4 shows the small-signal cutoff frequency for each setting.

LOS Circuitry

The LOS block detects the differential amplitude of the input signal and compares it against a preset threshold controlled by the 7-bit SET_LOS register. The LOS assert threshold is approximately $1.2 \text{mVp-p} \times \text{SET_LOS}[6:0]$. The LOS deassert level is approximately $1.6 \times \text{mes}$ the assert level to avoid LOS chatter. The recommended minimum setting is SET_LOS[6:0] = 8d.

LOS Output Masking

The LOS output masking feature masks false input signals that can occur after a loss-of-light event in a fiberoptic link. These false input signals, caused by some transimpedance amplifier implementations, can corrupt the LOS output and cause system-level link diagnostic errors.

The LOS output masking time can be programmed from 0 to 4.6ms in 36µs steps using the LOS_MASKTIME[6:0] register. The output mask timer is initiated on the first "0" to "1" LOS signal transition and prevents any further changes in the LOS output signal until the end of the programmed LOS timing period. The LOS output masking time should be carefully chosen to extend beyond any expected input glitch. See Figure 8.

Table 4. Offset-Correction Loop Cutoff Frequency

AZ_BW[1:0]	CUTOFF FREQUENCY (kHz)	
00	5	
01	10 (default)	
10	20	
11	40	

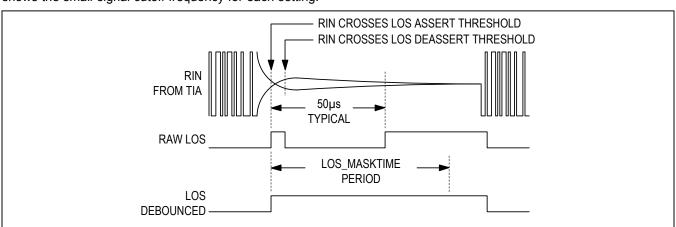


Figure 8. LOS Output Masking

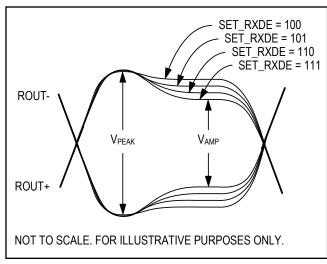


Figure 9. Deemphasis Effect on ROUT Signal

Receiver Path Selection and Bandwidth Modes

Table 5 shows the settings for the receiver paths and bandwidth selection modes.

Rx Output Stage

The CML output is optimized for a differential 100Ω load and can be squelched to its common-mode voltage manually or by the internal LOS status. Table 6 shows the output modes for various conditions/settings.

Deemphasis is included to compensate for FR4 loss at 10Gbps and is set by the SET_RXDE[2:0] bits. Figure 9 illustrates the effects of deemphasis on the output waveform.

Table 5. Receiver Path Selection and -3dB Bandwidth Setting Modes

RSEL + RATE_SEL	SET_RXBW[1:0]	OUTPUT OPERATION MODE DESCRIPTION	
0	00	Low-bandwidth Rx path with small-signal bandwidth of ≈ 1GHz	
0	01	Low-bandwidth Rx path with small-signal bandwidth of ≈ 2GHz	
0	10	Low-bandwidth Rx path with small-signal bandwidth of ≈ 2.5GHz	
0	11	Low-bandwidth Rx path with small-signal bandwidth of ≈ 3GHz	
1	XX	High-bandwidth Rx path	

Table 6. ROUT Enable/Disable Mode

XCVR_EN	RX_EN	RX_OUT_EN	SQ_EN	OUTPUT OPERATION MODE DESCRIPTION	
0	X	X	X	Disabled, to V _{CCRO}	
1	0	X	X	Disabled, to V _{CCRO}	
1	1	0	Х	Output squelched, to common-mode	
1	1	1	0	Enabled	
1	1	1	1	Squelch mode controlled by LOS	

Table 7. ROUT Amplitude Range and Resolution (Typical, RSEL + RATE_SEL = 1)

SET DYDEI2.01	DIFFERENTIAL OUTPUT AMPLITUDE (mV _{P-P}), V _{AMP} in Figure 9			
SET_RXDE[2:0]	SET_CML[4:0] = 12d	SET_CML[4:0] = 31d		
0xx	650	1080		
100	610	1000		
101	570	940		
110	530	850		
111	480	790		

1.25Gbps to 11.3Gbps Laser Driver

The MAX3956 contains a DC-coupled laser driver designed to drive 5Ω to 10Ω TOSAs from 1.25Gbps to 11.3Gbps. It contains an input buffer with programmable equalization, DC current and modulation current DACs, output driver, and eye safety circuitry. A 2-wire or 3-wire digital interface is used to control these functions.

Programmable Input Equalization

When operating at 10Gbps, connector and FR4 losses can be significant enough to increase jitter. To compensate for these losses the MAX3956 has adjustable input equalization as shown in Table 8. When TX_EQ \neq 00, the equalizer has an optimized range of 190mV_{P-P} to 700mV_{P-P} differential at TIN±.

Laser DC Current DAC

The DC current from the MAX3956 is optimized to provide up to 57mA of DC current into a 5Ω to 10Ω laser load with 58.5µA resolution. The current is controlled through the 2-wire or 3-wire interface using the APC loop or by open-loop control. While the transmitter is enabled, the compliance voltage at VOUT is V_{CCTO} - 1V to V_{CCTO} - 2V.

Effective DC current seen by the laser (I_{BIAS}) is actually the combination of the DC DAC current generated by the DCREG register (I_{DC}), MODREG register (I_{MOD}) and laser load (R). It is calculated by the formula:

$$I_{DC}$$
 = DC DAC Current
 I_{DC} = (DCREG[9:0] + 12) × 58.5 μ A
 I_{LD_DC} = I_{DC} + 0.5 × I_{MOD} × R/(50 + R)
 I_{BIAS} = I_{LD} DC + I_{LD} MOD/2

If the written value of DCREG[9:2] exceeds DCMAX[7:0], the DC_OVFL warning flag is set and DCREG[9:2] remains unchanged. If an attempt is made to set the DCREG to be less than 0, an underflow warning bit, DC UDFL will flag.

APC Operation

The automatic power control loop (APC) automatically adjusts DC laser current to maintain constant average current at the MDIN pin. The desired average current at the MDIN pin is set by the SET_APC register in conjunction with the MDIN_GAIN value. The MAX3956 measures the high peak and low peak of the MDIN current which represent the P1 and P0 levels of the optical power. These levels are held in the MD1REG and MD0REG registers respectively. The APC loop will increase/decrease DC laser current to make the following equation true:

SET APC[7:0] = MD1REG[15:8] + MD0REG[15:8]

When the APC loop is closed, the average MDIN current will be related to SET_APC and MDIN_GAIN by the following equation:

 $I_{MDIN AVG} = SET_APC[7:0] \times 1.22mV/MDIN_GAIN$

The largest step size the APC circuitry can apply to DCREG[9:0] is determined by DCINC[4:0]. So if DCINC = 1 then the APC can only increase or decrease DCREG[9:0] by 1 LSb per loop calculation. If DCINC[4:0] = 0, then the APC loop is frozen.

Flowchart for Setting Up APC Operation

Figure 10 explains the procedure for setting up APC operation on the MAX3956 and Figure 11 shows the optical power for each step in the flowchart process.

Open Loop Control of DC Laser Current

To control the DC DAC current manually (not using the APC loop), the APC_EN bit must be set to 0. DCREG controls the DC DAC current. DCREG cannot be directly written to but can be adjusted by writing to DCINC or SET_DC (if IBUPDT_EN=1). Setting IBUPDT_EN = 1 allows writes to SET_DC[7:0] to automatically transfer to DCREG[9:2]. The 2 LSb (bits 1 and 0) of DCREG are initialized to zero after POR and can be updated using the DCINC register. The DCMAX register limits the maximum DCREG[9:2] DAC code.

After initialization, the value of the DCREG register should be updated using the DCINC register. This optimizes cycle time and enhances laser safety. The DCINC[4:0] contains increment information in two's complement notation. Increment values range from -16 to +15 LSbs.

Laser Modulation Current DAC

The modulation current from the MAX3956 is optimized to provide up to 85mA of modulation current into a 5Ω laser load with 234µA resolution. The modulation current is controlled through the 2-wire/3-wire digital interface using the SET_DC, MODMAX, and MODINC. Effective modulation current seen by the laser is actually the combination

Table. 8 Tx Input Equalization Control

TX_EQ	BOOST AT 5.1GHz (dB)	
00	1.5	
01	3	
10	4.5	
11	5.5	

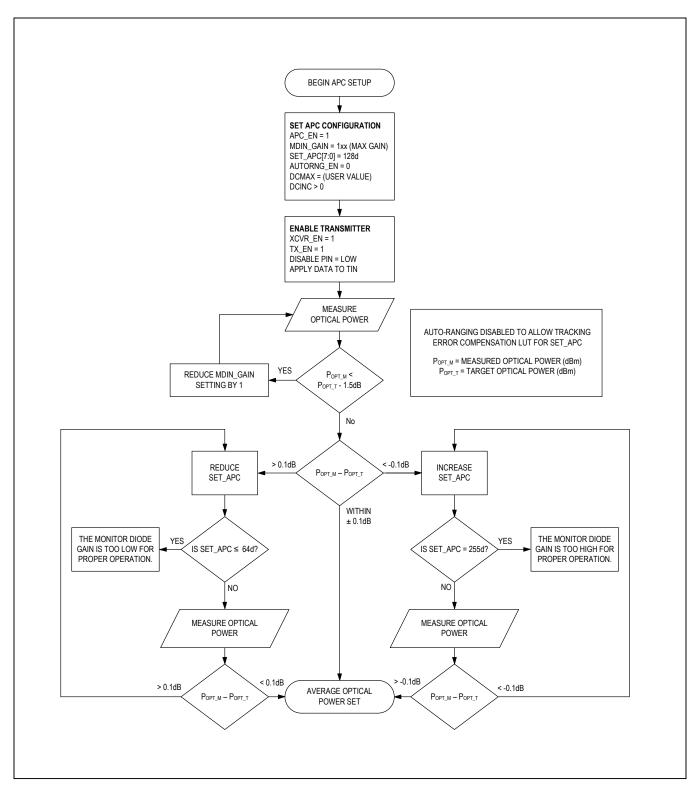


Figure 10. APC Setup Flowchart

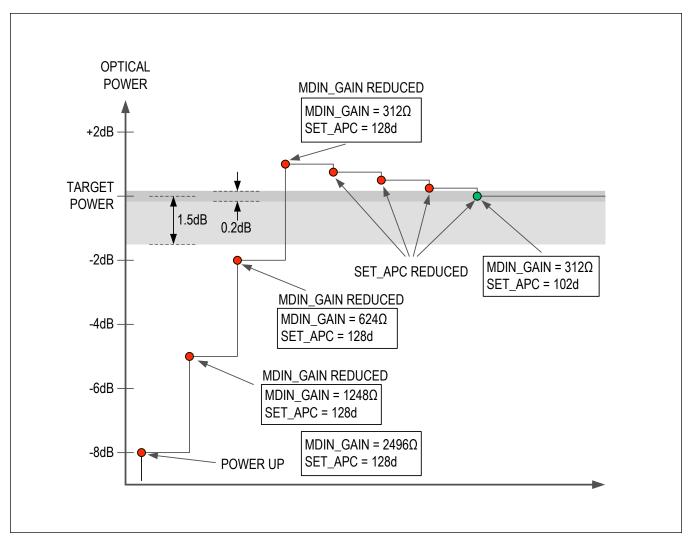


Figure 11. Example of Optical Power During APC Setup

of the DAC current generated by the SET_MOD register (I_{MOD}) and laser load (R). It is calculated by the formula:

 I_{MOD} = MOD DAC Current I_{MOD} = (SET_MOD[8:0] + 16) × 234 μ A I_{LD} MOD = I_{MOD} × 50 Ω /(R_{LASER} + 50 Ω)

Control of Laser Modulation Current DAC

MODREG controls the modulation DAC current and cannot be written to directly, but it can be adjusted by writing to MODINC or SET_MOD (if IMUPDT_EN=1). Setting IMUPDT_EN = 1 allows writes to SET_MOD[7:0] to automatically transfer to MODREG[8:1]. The LSb of MODREG is initialized to zero after POR and can be updated using the MODINC register. The MODMAX register limits the maximum MODREG[8:1] DAC code.

MODINC Usage

After initialization the value of the SET_MOD DAC register should be updated using the MODINC register to optimize cycle time and enhance laser safety. The MODINC register is an 8-bit register where the first 5 bits contain the increment information in two's complement notation. Increment values range from -16 to +15 LSbs. If the updated value of SET_MOD[8:1] exceeds MODMAX[7:0], the MOD_OVFL warning flag is set and SET_MOD[8:1] remains unchanged. If an attempt is made to set the overall modulation DAC code to be less than 0 by using a combination of SET_MOD register and MODINC register it will cause an underflow warning bit MOD_UDFL.

Eye Safety and Output Control Circuitry

There are several fault indicators associated with certain pins on the MAX3956, see Figure 13. If the voltage at the pin can cause an eye safety concern, then a fault is created and the TX output can be shut off. There is also a status indicator bit associated with each kind of fault condition. The MAX3956 has the capability to keep the transmitter active even if there is a fault condition by masking that fault condition. The status register bits will always flag a fault condition even if the actual fault is masked. When the fault is masked the FAULT pin voltage remains low even when there is a fault condition.

DDM

The MAX3956 integrates the monitoring functions required to implement an SFP system, and when combined with a simple digital-only μ C the system can comply with the SFF-8472 MSA. It may be desirable for the μ C to implement averaging of the DDM results. Table 10 indicates the ADC registers related to DDM.

Transceiver Temperature

The MAX3956 reports both the internal die temperature as well as the external board temperature (requires discrete pnp for sensing). Either may be used to support DDM reporting, however the internal die temperature is subject to self-heating. Programmable scale and offset factors allow the user to fine-tune the reported results. Figure 14 shows how the scale and offset are applied to the raw temperature data. The MAX3956 reporting format is consistent with the SFF-8472 reporting requirements.

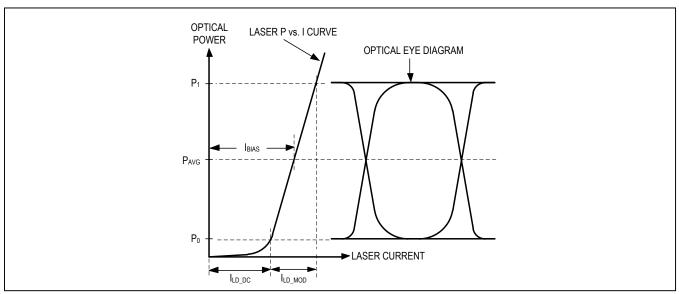


Figure 12. Laser Current Graph



Figure 13. Eye Safety Circuitry

Table 9. Circuit Response to Single-Point Faults

PIN	NAME	SHORT TO Vcc	SHORT TO GND	OPEN
1	INTRPT	No effect (Note 12)	No effect (Note 12)	No effect (Note 12)
2	FAULT	No effect (Note 12)	No effect (Note 12)	No effect (Note 12)
3	DISABLE	Tx output is off if DIS_POL = 1 (default). No effect if DIS_POL = 0	No effect if DIS_POL = 1 (default). Tx output is off if DIS_POL = 0	Tx output is off if DIS_POL = 1 (default). No effect if DIS_POL = 0
4, 7	V _{CCRO}	No effect	Board supply collapsed (Note 3)	No effect (Note 15)
5	ROUT+	No effect (Note 12)	No effect (Note 12)	No effect (Note 12)
6	ROUT-	No effect (Note 12)	No effect (Note 12)	No effect (Note 12)
8	CSEL	No effect (Note 12)	No effect (Note 12)	No effect (Note 12)
9	SCL	No effect (Note 12)	No effect (Note 12)	No effect (Note 12)
10	SDA	No effect (Note 12)	No effect (Note 12)	No effect (Note 12)
11	REGFILT	POR on	Disabled	No effect (Note 12)
12, 16, 26	I.C.	No effect	No effect	No effect
13	TIN+	No effect depending on TIN- amplitude (Note 16)	No effect depending on TIN- amplitude (Note 16)	No effect depending on TIN- amplitude (Note 16)
14	TIN-	No effect depending on TIN+ amplitude (Note 16)	No effect depending on TIN+ amplitude (Note 16)	No effect depending on TIN+ amplitude (Note 16)
15	V _{CCT}	No effect	Board supply collapsed (Note 3)	POR on
17	MDIN	No effect (Note 16)	No effect (Note 16)	No effect (Note 16)
18	V _{ССТО}	No effect	LVFLAG flag asserted, laser diode is off (Note 16)	LVFLAG flag asserted, laser diode is off (Note 16)
19	TOUTA	No effect	Disabled (Note 16)	Laser modulation current is reduced or disabled (Note 16)
20	TOUTC	Laser diode is off	Disabled (Note 16)	Laser modulation current is reduced or disable (Note 16)
21	VOUT	I _{DC} is on, but not delivered to laser; no fault.	Disabled (Note 16)	Disabled (Note 16)
22	TGND	No effect	No effect	No effect
23	TSNS	No effect	No effect	No effect
24	RSSI	No effect	No effect	No effect
25	BADC	No effect	No effect	No effect
27, 30	V _{CCX}	No effect	Board supply collapsed (Note 14)	No effect (Note 15)
28	RIN-	No effect	No effect	No effect
29	RIN+	No effect	No effect	No effect
31	RSEL	No effect	No effect	No effect
32	LOS	No effect	No effect	No effect
_	EP	Board supply collapsed (Note 14)	No effect	POR on

Note 12: Normal operation—does not affect the laser power.

Note 13: Pin functionality might be affected, which could affect laser power/performance.

Note 14: Supply-shorted current is assumed to be primarily on the circuit board (outside this device) and the main supply is collapsed by the short.

Note 15: Redundant path. Normal in functionality but performance could be affected.

Note 16: Depending on mask settings this condition can create a fault and shut down the Tx output. Default mask settings used for Table 9.

Warning: Shorted to V_{CC} or shorted to ground on some pins can violate the *Absolute Maximum Ratings*.

MAX3956

11.3Gbps Transceiver with DDM and DC-Coupled Laser Interface

The external temperature may be measured using a discrete PN junction. The MMBT3906 pnp transistor is recommended. For measuring temperatures above +85°C, the BF550 pnp transistor is recommended. During normal operation a current is sourced from the TSNS pin and TGND is internally shorted to ground, so that the base-emitter voltage of the PNP transistor can be measured and the temperature calculated (see Figure 15). The MAX3956 automatically removes the effect of parasitic resistance in series with the sense diode, allowing flexibility in the placement of the diode.

Internally Measured Supply Voltage

The MAX3956 reports the voltages of the V_{CCX} , V_{CCT} , and V_{CCTO} pins. The result from the MAX3956 is not formatted per SFF-8472 requirements, so the μC must format the data.

The supply voltage results are 12 bits, with a full-scale range of 4.656V. SFF-8472 specifies that the supply voltage be reported as a 16-bit number with LSb = $100\mu V$, so the result of the MAX3956 must be scaled by $1.137mV/100\mu V = 11.37$ in the μC .

Tx DC Current

The transmit DC value, DDM_TXRPT[11:0], is a calculation based on the laser DC current and the laser modulation current. Due to the laser and external tuning network, a small portion of the modulation adds to the DC current. It is shown as I_{LD_DC} in Figure 12. This value is located in the DDM_TXRPT[11:0] register (when DDM_TXRPT_SEL is set to 0) and is calculated as:

Tx DC Current = DDM_TXRPT[11:0] = $I_{DC} + I_{MOD}/12.8$ where:

$$I_{DC} = (DCREG[9:0] + 12) \times 58.5\mu A$$

 $I_{MOD} = (MODREG[8:0] + 16) \times 234\mu A$

The LSb size of DDM_TXRPT[11:0] is 58.5μA. The maximum value of DDM_TXRPT[11:0] is 1199d (70.1mA), while the minimum value is 17d (1mA).

NOTE: The register DDM_TXRPT[11:0] can take on the value of Tx DC or Tx average. To select Tx DC, set the DDM_TXRPT_SEL bit to 0.

When the DDM_TX_SHDN bit is high, the DDM_TXRPT values (whether Tx DC or Tx average) are invalid and held at last value before the transmitter was disabled. This includes disable by means of POR, fault, DISABLE pin, TX EN = 0, or XCVR EN = 0.

Tx Average Current

The transmit average current is a calculation based on the laser DC current and the laser modulation current. It is shown as I_{BIAS} in Figure 12. This value is located in the DDM_TXRPT[11:0] register (when DDM_TXRPT_SEL is set to 1) and calculated as:

Tx Average Current = DDM_TXRPT[11:0]
=
$$I_{DC}$$
 + 0.484 × I_{MOD}

where.

 $I_{DC} = (DCREG[9:0] + 12) \times 58.5\mu A$ $I_{MOD} = (MODREG[8:0] + 16) \times 234\mu A$

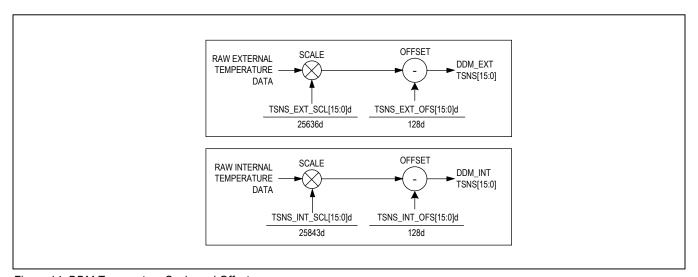


Figure 14. DDM Temperature Scale and Offset

The LSb size of DDM_TXRPT[11:0] is 58.5μ A. The maximum value of DDM_TXRPT[11:0] is 2055d (120.2mA), while the minimum value is 43d (2.5mA).

NOTE: The register DDM_TXRPT[11:0] can take on the value of Tx DC or Tx average. To select Tx average, set the DDM_TXRPT_SEL bit to 1.

When the DDM_TX_SHDN bit is high, the DDM_TXRPT values (whether Tx DC or Tx average) are invalid and held at last value before the transmitter was disabled. This includes disable by means of POR, fault, DISABLE pin, TX_EN = 0, or XCVR_EN = 0.

Tx Output Power

The transmit power register value, DDM_TXP[11:0], is a measure of the monitor diode current at the MDIN pin. To convert the register value to the actual Tx Power, use the following equation:

 $P_{AVG} = (DDM_TXP[11:0] \times 977nA)/K_{MD}$

where $K_{\mbox{\scriptsize MD}}$ is the laser diode to monitor diode gain in A/W.

The DDM_TXP value is updated when the automatic power control ADC completes its averaging of 32 (MDAVG_CNT=0) or 256 (MDAVG_CNT=1) samples. These samples occur every 100ns while the transmitter is on, so DDM_TXP updates occur at every 256 \times 100ns = 25.6 μ s when MDAVG_CNT=1.

The maximum value of DDM_TXP[11:0] is 4080d, while the minimum value is 32d.

Rx Optical Power

The MAX3956 reports the RSSI input current. The conversion between RSSI current and input optical power must be handled within the μ C. For PIN diode receivers a simple linear scaling factor may be all that is needed to convert between RSSI current and optical power.

RSSI Interface

The RSSI pin is an ADC input used to measure RSSI current from the TIA. For optimum power-supply rejection it is recommended to connect 100pF in series with 5Ω between the RSSI pin and GND.

The RSSI pin voltage is regulated to 1.62V as shown in Figure 16. The input stage is designed to only sink

Table 10. DDM Register Descriptions (Note 17)

RAW ADC PARAMETER	UPPER REGISTER	LOWER REGISTER	BITS	UPDATE RATE		LSB SIZE	NOTES
				DDM_AVG			
. , , , , , , , , , , , , , , , , , , ,				Off (1x)	On (4x)	0	
VCCX	DDM_VCCX[11:8]	DDM_VCCX[7:0]	12	10ms	40ms	1.137mV	18
VCCT	DDM_VCCT[11:8]	DDM_VCCT[7:0]	12	10ms	40ms	1.137mV	18
VCCTO	DDM_VCCTO[11:8]	DDM_VCCTO[7:0]	12	10ms	40ms	1.137mV	19
BADC	DDM_BADC[11:8]	DDM_BADC[7:0]	12	10ms	40ms	284.2µV	19
RSSI	DDM_RSSI[15:8]	DDM_RSSI[7:0]	16	10ms	40ms	35.5nA	19
Internal Temperature	DDM_INT_TSNS[15:8]	DDM_INT_TSNS[7:0]	16	10ms	40ms	1/256°C	20
External Temperature	DDM_EXT_TSNS[15:8]	DDM_EXT_TSNS[7:0]	16	10ms	40ms	1/256°C	20
TX DC TX Average	DDM_TXRPT[11:8]	DDM_TXRPT[7:0]	12	26µs		58.48µA	21, 22
TX Power	DDM_TXP[11:8]	DDM_TXP[7:0]	12	26µs		977nA	21

Note 17: Read both the upper and lower registers in a single block read.

Note 18: Unsigned result.

Note 19: Unsigned result. Results for negative inputs will be clamped to 00h.

Note 20: Upper byte is signed two's complement (-128 to +127), and lower byte is unsigned fractional (0 to 255/256).

Note 21: The result may be toggled between Laser DC current and Laser Average current using the DDM_TXRPT_SEL bit.

current. The RSSI will flag an interrupt (DDM_RSSI_LO_FAIL) if current is pulled out of this pin.

Signal Loopback

For testing purposes, the Tx input signal can be routed to the Rx output (TIN± to ROUT±). Likewise, the Rx input signal can be routed to the laser output (RIN± to TOUTA/TOUTC). When engaging loopback of TIN to ROUT, be aware that if Rx squelching is enabled there needs to be an active signal at RIN for ROUT to be enabled. Similarly, if the Tx squelch mode is enabled, there needs to be a signal at TIN for TOUTA/TOUTC to be enabled. See Figure 17.

Tx Fault, Transmitter Enable, Interrupt, and TOPSTAT Logic

Tx Fault Logic

The Tx fault logic provides detection of transmitter faults with fault indication bits located in the TXSTAT1 and TXSTAT2 registers. Any of the individual faults can be masked using the FMSK1 and FMSK2 registers.

Any fault indication bit, if masked, will flag but will not create a fault condition. When a fault condition occurs and is not masked, the transmitter will shut down unless masked by FMSK_TXFLT. To restart the transmitter after a shutdown has occurred, the source of the fault must be removed and either the DISABLE pin is toggled or the

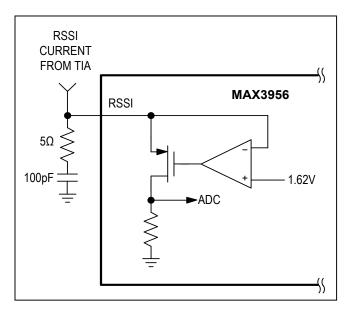


Figure 16. RSSI Circuitry

MODECTRL register has 68h written to it. The fault logic is shown in Figure 18.

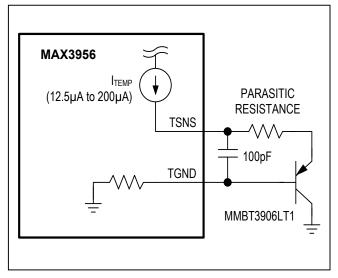


Figure 15. External Temperature Sense Circuit

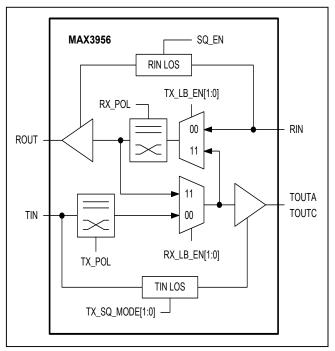


Figure 17. Loopback Block Diagram

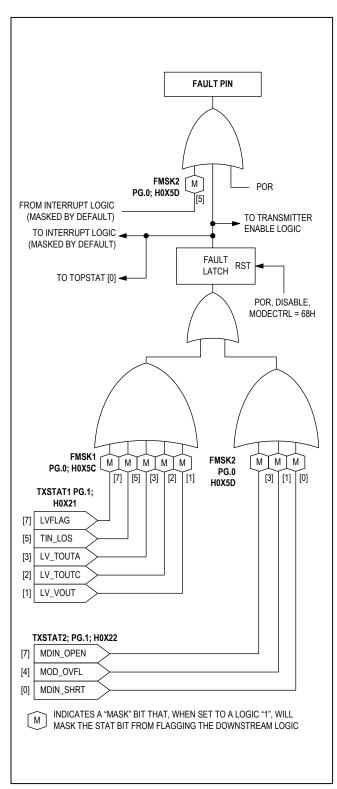


Figure 18. Fault Logic

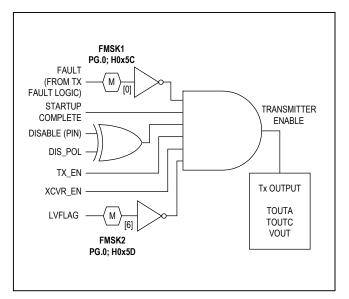


Figure 19. Transmitter Enable Logic

Transmitter Enable Logic

The requirements for the transmitter to be enabled are shown in Figure 19. "Startup complete" is a delay that allows the on-chip systems to become stable after power-up and is typically 100µs.

Interrupt Programmable Logic

INTRPT is a programmable pin that provides a trigger for real-time monitoring of internal status bits. Status registers RXSTAT, TXSTAT1, TXSTAT2, TXSTAT3, TXSTAT4, and DDMSTAT23 contain the bits that generate interrupt signals. Each of the bits in these registers can be individually masked if desired. If masked, the bit will still flag upon detection of its flag condition but the flag will not propagate to the INTRPT pin or the TOPSTAT register. Additional interrupts are POR and if unflagged, Tx fault. The interrupt logic is shown in Figure 20.

TOPSTAT Logic

Status registers RXSTAT, TXSTAT1, TXSTAT2, TXSTAT3, TXSTAT4, and DDMSTAT23 feed the TOPSTAT register along with signals Tx fault, P3V sense, and POR. TOPSTAT bits PORD and P3VFLAG will be set to "1" after power-up or a POR event. These bits are "sticky" therefore need to be read to be cleared. The TOPSTAT logic diagram is shown in Figure 21.

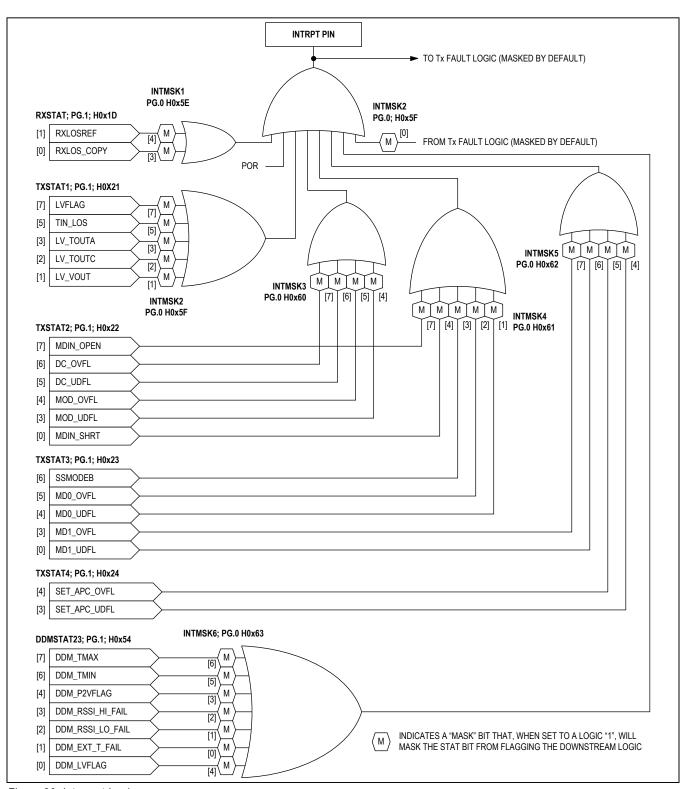


Figure 20. Interrupt Logic

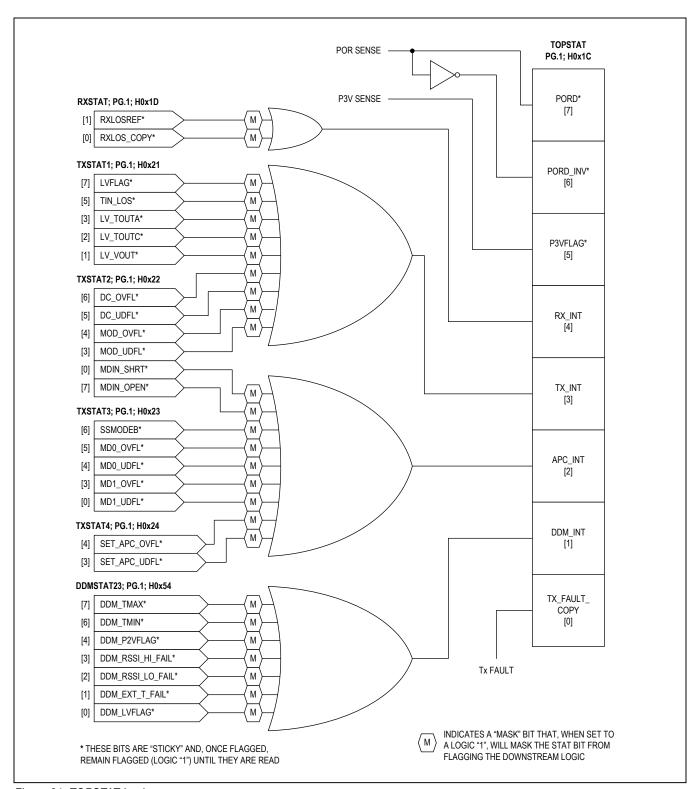


Figure 21. TOPSTAT Logic

MAX3956

11.3Gbps Transceiver with DDM and DC-Coupled Laser Interface

The following are two different ways for using TOPSTAT: Using the INTRPT pin

- Mask any undesired flags
- When INTRPT asserts, read TOPSTAT to narrow down the flag source. The flagged TOPSTAT bit indicates the type of interrupt flagged (APC, DDM, etc...) and which "STAT" register(s) must be read to locate the source of the flag, see Figure 21.
- Read the register(s) that triggered the TOPSTAT bit that is flagged. The individual source of the flag will remain flagged in the STAT register until it is read.

Not using the INTRPT Pin

- · Mask any undesired flags
- Periodically read TOPSTAT to determine if any interrupts have flagged.
- If a TOPSTAT bit has flagged, read the register(s) responsible for triggering that TOPSTAT bit to determine the specific source of the flag.

Table 11. Registers and Addresses for PAGE 0

PAGE	ADDRESS	NAME	DEFAULT VALUE	FUNCTION	
Χ	H0x00	MODECTRL	00h	Mode Control Register	
0	H0x3F	DDMCTRL1	64h	Upper Byte of External Temp Sensor Scale Factor	
0	H0x40	DDMCTRL2	24h	Lower Byte of External Temp Sensor Scale Factor	
0	H0x41	DDMCTRL3	88h	Upper Byte of External Temp Sensor Offset Factor	
0	H0x42	DDMCTRL4	93h	Lower Byte of External Temp Sensor Offset Factor	
0	H0x43	DDMCTRL5	64h	Upper Byte of Internal Temp Sensor Scale Factor	
0	H0x44	DDMCTRL6	F3h	Lower Byte of Internal Temp Sensor Scale Factor	
0	H0x45	DDMCTRL7	88h	Upper Byte of Internal Temp Sensor Offset Factor	
0	H0x46	DDMCTRL8	93h	Lower Byte of Internal Temp Sensor Offset Factor	
0	H0x47	DDMCTRL9	80h	DDM Averaging, DC Monitor Control Register	
0	H0x49	CALREG1	XXh		
0	H0x4A	CALREG2	XXh	Calibration Constant Register. Do not overwrite. See	
0	H0x4B	CALREG3	XXh	the Load Factory Calibration Constants section in the Design Procedure for the required calibration	
0	H0x4C	CALREG4	XXh	constants loading procedure.	
0	H0x4D	CALREG5	XXh		
0	H0x4E	RXCTRL1	61h	Receiver Control Register	
0	H0x4F	RXCTRL2	E8h	Receiver Control Register	
0	H0x50	RXCTRL3	4Bh	Receiver Control Register	
0	H0x51	RXCTRL4	C4h	Receiver Control Register	
0	H0x52	RXCTRL5	0Bh	Receiver Control Register	
0	H0x53	RXCTRL6	A0h	Receiver Control Register	
0	H0x55	SET_CML	09h	Receiver Output Voltage DAC	
0	H0x56	SET_LOS	10h	Receiver Loss-of-Signal Threshold Setting	
0	H0x58	LOS_MASKTIME	00h	LOS Output Masking Time Setting	
	1	1		•	
0	H0x59	TXCTRL1	0Fh	Transmitter Control Register	
0	H0x5A	TXCTRL2	12h	Transmitter Control Register	

Table 11. Registers and Addresses for PAGE 0 (continued)

PAGE	ADDRESS	NAME	DEFAULT VALUE	FUNCTION	
0	H0x5C	FMSK1	70h	Transmitter Fault Mask Register	
0	H0x5D	FMSK2	3Fh	Transmitter Fault Mask Register	
0	H0x5E	INTMSK1	7Fh	Transmitter Interrupt Mask Register	
0	H0x5F	INTMSK2	FFh	Transmitter Interrupt Mask Register	
0	H0x60	INTMSK3	FFh	Transmitter Interrupt Mask Register	
0	H0x61	INTMSK4	FFh	Transmitter Interrupt Mask Register	
0	H0x62	INTMSK5	F0h	Transmitter Interrupt Mask Register	
0	H0x63	INTMSK6	7Fh	Transmitter Interrupt Mask Register	
0	H0x67	TOPCTRL1	00h	Tx to Rx Loopback Control Register	
0	H0x68	TOPCTRL2	00h	Rx to Tx Loopback Control Register	

Register Descriptions

MAX3956 Mode Control Register (MODECTRL), Address: H0x00 (Page Independent)

BIT	D[7:0]	DESCRIPTION
Bit Name	MODECTRL [7:0]	00h = normal mode – read-only mode with exception of all increment registers (default)
Read/Write	R/W	12h = setup mode – enables write permission clears after each write operation 68h = fault clear mode – clears all faults including the fault latch at FAULT pin
POR State	00h Normal Mode & Page 0	There are two register address page select settings: 55h = select page-1 (default) 81h = select page-0
Reset Upon Read	No	Read-back returns 0 when page 0 is selected and 1 when page 1 is selected

DDM Control Register (DDMCTRL1), Address: H0x3F (Page 0)

BIT	D[7:0]	DESCRIPTION
Bit Name	TSNS_EXT_SCL[15:8]	
Read/Write	R/W Write in setup mode only	This is the upper byte of the external temperature sense scale factor. This byte, along with the lower byte represents a 16-bit, unsigned value.
POR State	64h	

DDM Control Register (DDMCTRL2), Address: H0x40 (Page 0)

BIT	D[7:0]	DESCRIPTION	
Bit Name	TSNS_EXT_SCL[7:0]		
Read/Write	R/W Write in setup mode only	This is the lower byte of the external temperature sense scale factor. This byte, along with the upper byte represents a 16-bit, unsigned value.	
POR State	24h		

DDM Control Register (DDMCTRL3), Address: H0x41 (Page 0)

BIT D[7:0]		DESCRIPTION	
Bit Name	TSNS_EXT_OFS[15:8]		
Read/Write	R/W Write in setup mode only	This is the upper byte of the external temperature offset term. This, along with the lower byte represents a 16-bit, unsigned value. TSNS_EXT_OFS[15:0] is divided by 128 then subtracted from the scaled external-temperature data, see Figure 14.	
POR State	88h	37 120 mon dubudustad nom die sodied oxionidi temperature duta, see rigure 14.	

DDM Control Register (DDMCTRL4), Address: H0x42 (Page 0)

BIT D[7:0]		DESCRIPTION	
Bit Name	TSNS_EXT_OFS[7:0]		
Read/Write	R/W Write in setup mode only	This is the lower byte of the external temperature offset term. This, along with the upper byte represents a 16-bit, unsigned value. TSNS_EXT_OFS[15:0] is divided by 128 then subtracted from the scaled external-temperature data, see Figure 14.	
POR State 93h		by 125 then subtracted from the socied external temperature data, see Figure 14.	

DDM Control Register (DDMCTRL5), Address: H0x43 (Page 0)

BIT D[7:0]		DESCRIPTION		
Bit Name	TSNS_INT_SCL[15:8]			
Read/Write	R/W Write in setup mode only	This is the upper byte of the internal temperature scale factor. This, along with the lower byte represents a 16-bit, unsigned value.		
POR State	64h			

DDM Control Register (DDMCTRL6), Address: H0x44 (Page 0)

BIT	D[7:0]	DESCRIPTION	
Bit Name	TSNS_INT_SCL[7:0]		
Read/Write	R/W Write in setup mode only	This is the lower byte of the internal temperature scale factor. This, along with the upper byte represents a 16-bit, unsigned value.	
POR State	F3h		

DDM Control Register (DDMCTRL7), Address: H0x45 (Page 0)

BIT	D[7:0]	DESCRIPTION
Bit Name	TSNS_INT_OFS[15:8]	
Read/Write	R/W Write in setup mode only	This is the upper byte of the internal temperature offset term. This, along with the lower byte represents a 16-bit, unsigned value. TSNS_INT_OFS[15:0] is divided by 128 then subtracted from the scaled internal-temperature data, see Figure 14.
POR State	88h	by 125 then subtracted from the scaled internal temperature data, 556 Figure 14.

DDM Control Register (DDMCTRL8), Address: H0x46 (Page 0)

BIT	D[7:0]	DESCRIPTION	
Bit Name	TSNS_INT_OFS[7:0]		
Read/Write	R/W Write in setup mode only	This is the lower byte of the internal temperature offset term. This, along with the upper byte represents a 16-bit, unsigned value. TSNS_INT_OFS[15:0] is divided by 128 then subtracted from the scaled internal-temperature data, see Figure 14.	
POR State	93h	by 120 then subtracted from the scaled internal-temperature data, see Figure 14.	

DDM Control Register (DDMCTRL9), Address: H0x47 (Page 0)

BIT	D7	D[6:3]	D2	D[1:0]	
Bit Name	DDM_AVG	RES	DDM_TXRPT_SEL	RES	
Read/Write	R/W, Write in setup mode only				
POR State	1	0000	0	00	

BIT	NAME	DESCRIPTION
D[7]	DDM_AVG	Enables DDM averaging. 0 = no averaging 1 = 4x averaging (default)
D[6:3]	RES	Reserved
D[2]	DDM_TXRPT_SEL	Controls what the DDM_TXRPT register reports 0 = Tx DC current monitor (default) 1 = Tx average current monitor
D[1:0]	RES	Reserved

Calibration Register (CALREG1), Address: H0x49 (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	RES	CAL1[6]	CAL1[5]	CAL1[4]	CAL1[3]	CAL1[2]	CAL1[1]	CAL1[0]
Read/Write	R		R/W, Write in setup mode only					
POR State	0	X	X	×	X	X	X	X

Factory-calibrated register. Do not overwrite. Calibration constants must be loaded after POR. See Load Factory Calibration Constants.

Calibration Register (CALREG2), Address: H0x4A (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	RES	CAL2[6]	CAL2[5]	CAL2[4]	CAL2[3]	CAL2[2]	CAL2[1]	CAL2[0]
Read/Write	R		R/W, Write in setup mode only					
POR State	0	Х	Х	Х	Х	Х	Х	Х

Factory calibrated register. Do not overwrite. Calibration constants must be loaded after POR. See Load Factory Calibration Constants.

Calibration Register (CALREG3), Address: H0x4B (Page 0)

BIT	D[7:6]	D5	D4	D3	D2	D1	D0
Bit Name	RES	CAL3[5]	CAL3[4]	CAL3[3]	CAL3[2]	CAL3[1]	CAL3[0]
Read/Write	R	R/W Write in setup mode only					
POR State	00	Х	Х	Х	Х	Х	Х

Factory-calibrated register. Do not overwrite. Calibration constants must be loaded after POR. See Load Factory Calibration Constants.

Calibration Register (CALREG4), Address: H0x4C (Page 0)

BIT	D[7:4]	D3	D2	D1	D0	
Bit Name	RES	CAL4[3]	CAL4[2]	CAL4[1]	CAL4[0]	
Read/Write	R	R/W, Write in setup mode only				
POR State	0000	X	X	Х	Х	

Factory-calibrated register. Do not overwrite. Calibration constants must be loaded after POR. See Load Factory Calibration Constants.

Calibration Register (CALREG5), Address: H0x4D (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	CAL5[7]	CAL5[6]	CAL5[5]	CAL5[4]	CAL5[3]	CAL5[2]	CAL5[1]	CAL5[0]
Read/Write	R/W, Write in setup mode only							
POR State	Х	Х	Х	Х	Х	Х	Х	Х

Factory-calibrated register. Do not overwrite. Calibration constants must be loaded after POR. See Load Factory Calibration Constants.

Receiver Control Register (RXCTRL1), Address: H0x4E (Page 0)

BIT	D7	D6	D5	D4	D[3:1]	D0		
Bit Name	RES	RX_EN	RX_OUT_EN	SQ_EN	RES	RX_POL		
Read/Write	R		R/W, Write in setup mode only					
POR State	0	1	1	0	000	1		

BIT	NAME	DESCRIPTION
D[7]	RES	Reserved
D[6]	RX_EN	Enables Rx core circuitry 0 = disabled – powers down the entire RX section 1 = enabled (default)
D[5]	RX_OUT_EN	This bit directly controls the mode of the RX output stage 0 = disabled to common-mode voltage 1 = enabled (default)
D[4]	SQ_EN	This bit enables control of the RX output stage by means of LOS event 0 = disabled (default) 1 = enabled LOS event disables the RX output stage to common mode
D[3:1]	RES	Reserved. Must be set to 000 for proper operation.
D[0]	RX_POL	Sets polarity of the Rx receiver path 0 = inverted 1 = normal (default)

Receiver Control Register (RXCTRL2), Address: H0x4F (Page 0)

BIT	D7	D6	D5	D[4:3]	D[2:0]		
Bit Name	RES	RSEL_POL	RATE_SEL	SET_RXBW[1:0]	SET_RXDE[2:0]		
Read/Write	R/W, Write in setup mode only						
POR State	1	1	1	01	000		

BIT	NAME	DES	CRIPTION		
D[7]	RES	Reserved. Must be set to 1 for proper op	Reserved. Must be set to 1 for proper operation.		
D[6]	RSEL_POL	Sets polarity of the RSEL pin 0 = inverted 1 = normal (default)			
D[5]	RATE_SEL	Rate select bit. Logical OR combination of this bit and RSEL pin controls Rx path selection. 0 = Low-bandwidth mode 1 = High-bandwidth mode (default)			
		SET_RXBW sets the -3dB BW of the lowpass filter in a low BW Rx path the meaning of the two bits changes with RX data path selection. See below:			
		RATE_SEL + RSEL = 0	RATE_SEL + RSEL = 1		
D[4:3]	SET_RXBW[1:0]	00 = 1GHz	01 = High-bandwidth mode (default)		
		01 = 2GHz	All others = Reserved		
		10 = 2.5GHz			
		11 = 3GHz			
D[2:0]	SET_RXDE[2:0]	11 = 3GHz Sets deemphasis for the Rx output stage to compensate for FR4 loss at 10Gbps 0xx = disabled (default) 100 = 1dB deemphasis 101 = 2dB deemphasis 110 = 3dB deemphasis 111 = 4dB deemphasis			

Receiver Control Register (RXCTRL3), Address: H0x50 (Page 0)

BIT	D[7:3]	D[2:1]	D0			
Bit Name	RES	AZ_BW[1:0]	RES			
Read/Write	R/W, Write in setup mode only					
POR State	01001	01	1			

BIT	NAME	DESCRIPTION
D[7:3]	RES	Reserved
D[2:1]	AZ_BW[1:0]	Selects the auto-zero bandwidth $00 = 5kHz$ $01 = 10kHz (default)$ $10 = 20kHz$ $11 = 40kHz$
D[0]	RES	Reserved

Receiver Control Register (RXCTRL4), Address: H0x51 (Page 0)

BIT	D7	D6	D[5:0]		
Bit Name	RES	LOS_POL	RES		
Read/Write		R/W, Write in setup mode only			
POR State	1	1	000100		

BIT	NAME	DESCRIPTION
D[7]	RES	Reserved
D[6]	LOS_POL	Selects the LOS polarity 0 = inverted 1 = normal (default)
D[5:0]	RES	Reserved

Receiver Control Register (RXCTRL5), Address: H0x52 (Page 0)

BIT	D[7:4]	D[7:4] D3			
Bit Name	RES	LOS_EN	RES		
Read/Write	R/W, Write in setup mode only				
POR State	0000	1	011		

BIT	NAME	DESCRIPTION
D[7:4]	RES	Reserved
D[3]	LOS_EN	LOS enable 0 = disabled 1 = enabled (default)
D[2:0]	RES	Reserved

Receiver Control Register (RXCTRL6), Address: H0x53 (Page 0)

BIT	D[7:5]	D4	D[3:0]		
Bit Name	RES	RES LOS_PU_EN			
Read/Write	R/W, Write in setup mode only				
POR State	101	0	0000		

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
D[4]	LOS_PU_EN	Enables active pullup on LOS pin. When enabled the LOS output becomes a push-pull CMOS output. 0 = disabled, open-drain output (default) 1 = enabled, push-pull CMOS output
D[3:0]	RES	Reserved

Receiver Control Register (SET_CML), Address: H0x55 (Page 0)

BIT	D[7:5]	D4	D3	D2	D1	D0	
Bit Name	RES	SET_CML[4]	SET_CML[3]	SET_CML[2]	SET_CML[1]	SET_CML[0]	
Read/Write		R/W, Write in setup mode only					
POR State	000	0	1	0	0	1	

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
		Set Rx output amplitude. Amplitudes listed below are valid for SET_RXDE = 0xx 0 0000 = 400mV _{P-P}
D[4:0]	SET_CML[4:0]	0 1001 = 600mV _{P-P} (default)
		 1 1111 = 1V _{P-P}

Receiver Control Register (RXCTRL7), Address: H0x56 (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	SET_LOS [6]	SET_LOS [5]	SET_LOS [4]	SET_LOS [3]	SET_LOS [2]	SET_LOS [1]	SET_LOS [0]	RES
Read/Write		R/W, Write in setup mode only						
POR State	0	0	0	1	0	0	0	0

BIT	NAME	DESCRIPTION
D[7:1]	SET_ LOS[6:0]	Set LOS threshold. Assert threshold approximately 1.2mVp_p × SET_LOS[6:0]. Deassert threshold is approximately 1.6 × the assert threshold to avoid LOS chatter due to noise. 00 0000 = minimum assert level 00 1000 = 9.6mVp_p differential (default) 11 1111 = maximum assert level
D[0]	RES	Reserved

Receiver Control Register (LOS_MASKTIME), Address: H0x58 (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	RES	LOS_MASK TIME[6]	LOS_MASK TIME[5]	LOS_ MASK TIME[4]	LOS_MASK TIME[3]	LOS_MASK TIME[2]	LOS_MASK TIME[1]	LOS_MASK TIME[0]
Read/Write		R/W, Write in setup mode only						
POR State	0	0	0	0	0	0	0	0

BIT	NAME	DESCRIPTION		
D[7]	RES	Reserved		
D[6:0]	LOS_MASKTIME[6:0]	Sets masking time for LOS. The LSb size is 36μs. 000 0000 = 0μs (default)		

Transmitter Control Register (TXCTRL1), Address: H0x59 (Page 0)

BIT	D7	D[6:5]	D4	D3	D[2:1]	D0	
Bit Name	LOW_DC_EN	RES	FAULT_PU_EN	FAULT_POL	RES	TX_POL	
Read/Write	R/W, Write in setup mode only						
POR State	0	00	0	1	11	1	

BIT	NAME	DESCRIPTION
D[7]	LOW_DC_EN	Enables low-DC current mode when low laser threshold current is needed 0 = disabled (default) 1 = enabled
D[6:5]	RES	Reserved
D[4]	FAULT_PU_EN	Enables active pull-up on FAULT pin. When enabled the FAULT output becomes a push-pull CMOS output. 0 = disabled, open-drain output (default) 1 = enabled, push-pull CMOS output
D[3]	FAULT_POL	Sets FAULT pin polarity 0 = inverted 1 = normal (default)
D[2:1]	RES	Reserved
D[0]	TX_POL	Sets TX data path polarity 0 = inverted 1 = normal (default)

Transmitter Control Register (TXCTRL2), Address: H0x5A (Page 0)

BIT	D[7:5]	D4	D3	D2	D1	D0	
Bit Name	RES	DIS_POL	TX_EQ[1]	TX_EQ[0]	TX_SQ_MODE[1]	TX_SQ_MODE[0]	
Read/Write	R/W Write in setup mode only						
POR State	000	1	0	0	1	0	

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
D[4]	DIS_POL	Sets polarity of DISABLE pin 0 = inverse 1 = normal (default)
D[3:2]	TX_EQ[1:0]	Selects TX input equalization 00 = 1.5dB boost at 5.1GHz (default) 01 = 3dB boost at 5.1GHz 10 = 4.5dB boost at 5.1GHz 11 = 5.5dB boost at 5.1GHz
D[1:0]	TX_SQ_MODE[1:0]	Tx output squelch-modes during TIN LOS event 00 = no current into TOUTC pin 01 = sink current set to a midlevel corresponding to P _{AVG} at current temperature 10 = modulation current is disabled but APC loop remains active (default) 11 = squelch disabled

Fault Mask Control Register (FMSK1), Address: H0x5C (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	FMSK_ LVFLAG	RES	FMSK_ TIN_LOS	RES	FMSK_ TOUTA	FMSK_ TOUTC	FMSK_ VOUT	FMSK_ TXFLT
Read/Write	R/W Write in setup mode only							
POR State	0	1	1	1	0	0	0	0

The FMSK1 register sets mask bits preventing individual events to latch fault at FAULT pin.

BIT	NAME	DESCRIPTION
D[7]	FMSK_LVFLAG	Mask LVFLAG fault condition on V _{CCTO} pin 0 = no mask (default) 1 = mask
D[6]	RES	Reserved
D[5]	FMSK_TIN_LOS	Mask TIN_LOS fault condition 0 = unmasked 1 = mask (default)
D[4]	RES	Reserved
D[3]	FMSK_TOUTA	Mask LV_TOUTA fault condition 0 = no mask (default) 1 = mask
D[2]	FMSK_TOUTC	Mask LV_TOUTC fault condition 0 = no mask (default) 1 = mask
D[1]	FMSK_VOUT	Mask LV_VOUT fault condition 0 = no mask (default) 1 = mask
D[0]	FMSK_TXFLT	Masks the FAULT latch signal, which controls the output stage on/off behavior. 0 = No mask (default) 1 = Mask When FMSK1[0] = 1, output stage behavior becomes independent of FAULT conditions.

Fault Mask Control Register (FMSK2), Address: H0x5D (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	_	FMSK_ LVFLAG_ OUTDIS	FMSK_ INTRPT_ FAULT	RES	FMSK_ MDIN_OPEN	RES	FMSK_ MOD_OVFL	FMSK_ MDIN_SHRT
Read/Write	R/W Write in setup mode only							
POR State	0	0	1	1	1	1	1	1

The FMSK2 register sets mask bits preventing individual events to latch fault at FAULT pin.

BIT	NAME	DESCRIPTION
D[6]	FMSK_LVFLAG_OUTDIS	Mask Tx output disable during LVFLAG event 0 = no mask (default) 1 = mask
D[5]	FMSK_INTRPT_FAULT	Mask logic OR combination of interrupt event and fault event at FAULT pin. 0 = no mask 1 = mask (default)
D[4]	RES	Reserved
D[3]	FMSK_MDIN_OPEN	Mask MDIN_OPEN fault condition 0 = no mask 1 = mask (default)
D[2]	RES	Reserved
D[1]	FMSK_MOD_OVFL	Mask MOD_OVFL fault condition. Threshold set by MODMAX register. 0 = no mask 1 = mask (default)
D[0]	FMSK_MDIN_SHRT	Mask MDIN_SHRT fault condition 0 = no mask 1 = mask (default)

Interrupt Mask Control Register (INTMSK1), Address: H0x5E (Page 0)

BIT	D[7:5]	D4	D3	D[2:0]		
Bit Name	RES	INTMSK_RXLOSREF	INTMSK_RXLOS RES			
Read/Write	R/W Write in setup mode only					
POR State	011	1	1	111		

The INTMSK1 register sets mask bits preventing individual events to latch interrupt at INTRPT pin.

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
D[4]	INTMSK_RXLOSREF	Mask RXLOSREF interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[3]	INTMSK_RXLOS	Mask RXLOS copy from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[2:0]	RES	Reserved

Interrupt Mask Control Register (INTMSK2), Address: H0x5F (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	INTMSK_ LVFLAG	RES	INTMSK_ TIN_LOS	RES	INTMSK_ TOUTA	INTMSK_ TOUTC	INTMSK_ VOUT	INTMSK_ FAULT
Read/Write	R/W Write in setup mode only							
POR State	1	1	1	1	1	1	1	1

The INTMSK2 register sets mask bits preventing individual events to latch interrupt at INTRPT pin.

BIT	NAME	DESCRIPTION
D[7]	INTMSK_LVFLAG	Mask LVFLAG interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[6]	RES	Reserved
D[5]	INTMSK_TIN_LOS	Mask TIN_LOS interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[4]	RES	Reserved
D[3]	INTMSK_TOUTA	Mask LV_TOUTA interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[2]	INTMSK_TOUTC	Mask LV_TOUTC interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[1]	INTMSK_VOUT	Mask LV_VOUT interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[0]	INTMSK_FAULT	Mask fault event from INTRPT pin 0 = no mask 1 = mask (default)

Interrupt Mask Control Register (INTMSK3), Address: H0x60 (Page 0)

BIT	D7	D6	D5	D4	D[3:0]
Bit Name	INTMSK_DC_OVFL	INTMSK_DC_UDFL	INTMSK_MOD_OVFL	INTMSK_MOD_UDFL	RES
Read/Write		R/W Write in setup mode only			
POR State	1	1	1	1	1111

The INTMSK3 register sets mask bits preventing individual events to latch interrupt at INTRPT pin.

BIT	NAME	DESCRIPTION
D[7]	INTMSK_DC_OVFL	Mask DC_OVFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[6]	INTMSK_DC_UDFL	Mask DC_UDFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[5]	INTMSK_MOD_OVFL	Mask MOD_OVFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[4]	INTMSK_MOD_UDFL	Mask MOD_UDFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[3:0]	RES	Reserved

Interrupt Mask Control Register (INTMSK4), Address: H0x61 (Page 0)

BIT	D7	D[6:5]	D4	D3	D2	D1	D0
Bit Name	INTMSK_ MDOPEN	RES	INTMSK_ MDIN_SHRT	INTMSK_ SSMODE	INTMSK_ MD0OVFL	INTMSK_ MD0UDFL	RES
Read/Write	R/W Write in setup mode only						
POR State	1	11	1	1	1	1	1

The INTMSK4 register sets mask bits preventing individual events to latch interrupt at INTRPT pin.

BIT	NAME	DESCRIPTION
D[7]	INTMSK_MDOPEN	Mask MDIN_OPEN interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[6:5]	RES	Reserved
D[4]	INTMSK_MDIN_SHRT	Mask MDIN_SHRT interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[3]	INTMSK_SSMODE	Mask SSMODE interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[2]	INTMSK_MD0OVFL	Mask MD0_OVFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[1]	INTMSK_MD0UDFL	Mask MD0_UDFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[0]	RES	Reserved

Interrupt Mask Control Register (INTMSK5), Address: H0x62 (Page 0)

BIT	D7	D6	D5	D4	D[3:0]
Bit Name	INTMSK_MD10VFL	INTMSK_MD1UDFL	INTMSK_ SETAPC_OVFL	INTMSK_ SETAPC_UDFL	RES
Read/Write	R/W Write in setup mode	only			
POR State	1	1	1	1	0000

The INTMSK5 register sets mask bits preventing individual events to latch interrupt at INTRPT pin.

BIT	NAME	DESCRIPTION
D[7]	INTMSK_MD10VFL	Mask MD1_OVFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[6]	INTMSK_MD1UDFL	Mask MD1_UDFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[5]	INTMSK_SETAPC_OVFL	Mask SET_APC_OVFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[4]	INTMSK_SETAPC_UDFL	Mask SET_APC_UDFL interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[3:0]	RES	Reserved

Interrupt Mask Control Register (INTMSK6), Address: H0x63 (Page 0)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	RES	INTMSK_ DDMTMAX	INTMSK_ DDMTMIN	INTMSK_DDM_ LVFLAG	INTMSK_ P2VFLAG	INTMSK_ RSSI_HI	INTMSK_ RSSI_LO	INTMSK_ EXT_TF
Read/Write		R/W Write in setup mode only						
POR State	0	1	1	1	1	1	1	1

The INTMSK6 register sets mask bits preventing individual events to latch interrupt at INTRPT pin.

BIT	NAME	DESCRIPTION
D[7]	RES	Reserved
D[6]	INTMSK_DDMTMAX	Mask DDM_TMAX interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[5]	INTMSK_ DDMTMIN	Mask DDM_TMIN interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[4]	INTMSK_DDM_ LVFLAG	Mask DDM_LVFLAG interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[3]	INTMSK_ P2VFLAG	Mask DDM_P2VFLAG interrupt (VCCX and VCCT) from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[2]	INTMSK_RSSI_HI	Mask DDM RSSI reading stuck high interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[1]	INTMSK_RSSI_LO	Mask DDM RSSI reading stuck low interrupt from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)
D[0]	INTMSK_EXT_TF	Mask DDM_EXT_T_FAIL external temperature reading flag/fault interrupt (missing connection to external PNP) from INTRPT pin and TOPSTAT register 0 = no mask 1 = mask (default)

Tx to Rx Loopback Control Register (TOPCTRL1), Address: H0x67 (Page 0)

BIT	D[7:6]	D[5:4]	D[3:0]		
Bit Name	RES	TX_LB_EN[1:0]	RES		
Read/Write		R/W Write in setup mode only			
POR State	00	00	0000		

The TOPCTRL1 register enables signal loopback from the Tx input to the Rx output.

BIT	NAME	DESCRIPTION		
D[7:6]	RES	Reserved		
D[5:4]	TX_LB_ EN[1:0]	Transmitter Loopback Enable 00 = Tx to Rx loopback disabled (default) 11 = Tx to Rx loopback enabled	01 = Reserved 10 = Reserved	
D[3:0]	RES	Reserved		

Rx to Tx Loopback Control Register (TOPCTRL2), Address: H0x68 (Page 0)

BIT	D[7:6]	D[5:4]	D[3:0]	
Bit Name	RES	RX_LB_EN[1:0]	RES	
Read/Write	R/W Write in setup mode only			
POR State	00	00	0000	

The TOPCTRL2 register enables signal loopback from the Rx input to the Tx output.

BIT	NAME	DESCRIPTION		
D[7:6]	RES	Reserved		
D[5:4]	RX_LB_EN[1:0]	Receiver Loopback Enable 00 = Rx to Tx loopback disabled (default) 11 = Rx to Tx loopback enabled 10 = Reserved		
D[3:0]	RES	Reserved		

Table 12. Registers and Addresses for PAGE 1

PAGE	ADDRESS	NAME	DEFAULT VALUE	FUNCTION
Х	H0x00	MODECTRL	00h	Mode Control Register
1	H0x01	TXCTRL3	02h	Transmitter Control Register
1	H0x02	TXCTRL4	0Ah	Transmitter Control Register
1	H0x0A	TXCTRL5	08h	Transmitter Control Register
1	H0x0B	TXCTRL6	80h	Transmitter Control Register
1	H0x0C	DCMAX	12h	This register sets the [9:2] SET_DC DAC Code Limit
1	H0x0D	MODMAX	30h	This register sets the [8:1]SET_MOD DAC Code Limit
1	H0x0E	SET_DC	00h	Laser DC Current DAC Initial Value
1	H0x0F	SET_MOD	00h	Laser Modulation Current DAC Initial Value

Table 12. Registers and Addresses for PAGE 1 (continued)

PAGE	ADDRESS	NAME	DEFAULT VALUE	FUNCTION	
1	H0x10	DCINC	00h	SET_DC DAC Two's Complement Increment Register	
1	H0x11	MODINC	00h	SET_MOD DAC Two's Complement Increment Register	
1	H0x12	SET_APC	80h	APC Loop Target Setting Register	
1	H0x13	APCINC	00h	SET_APC Target Two's Complement Increment Register	
1	H0x14	TXCTRL7	14h	Transmitter Control Register	
1	H0x15	TOPCTRL3	90h	Transceiver Control Register	
1	H0x16	DCREG	00h	Laser DC Current DAC Read-Back	
1	H0x17	MODREG	00h	Laser Modulation Current DAC Read-Back	
1	H0x18	MD1REGH	00h	Upper Byte of Digitized Top Peak Value of MD Input Current	
1	H0x19	MD1REGL	00h	Lower Byte of Digitized Top Peak Value of MD Input Current	
1	H0x1A	MD0REGH	00h	Upper Byte of Digitized Bottom Peak Value of MD Input Current	
1	H0x1B	MD0REGL	00h	Lower Byte of Digitized Bottom Peak Value of MD Input Current	
1	H0x1C	TOPSTAT	A0h	Transceiver Status Register	
1	H0x1D	RXSTAT	10h	Receiver Status Register	
1	H0x21	TXSTAT1	00h	Transmitter Status Register	
1	H0x22	TXSTAT2	00h	Transmitter Status Register	
1	H0x23	TXSTAT3	00h	Transmitter Status Register	
1	H0x24	TXSTAT4	00h	Transmitter Status Register	
1	H0x3E	DDMSTAT1	00h	Upper Byte of Digitized RSSI Value	
1	H0x3F	DDMSTAT2	00h	Lower Byte of Digitized RSSI Value	
1	H0x40	DDMSTAT3	00h	Upper Byte of Digitized VCCX Value	
1	H0x41	DDMSTAT4	00h	Lower Byte of Digitized VCCX Value	
1	H0x42	DDMSTAT5	00h	Upper Byte of Digitized VCCT Value	
1	H0x43	DDMSTAT6	00h	Lower Byte of Digitized VCCT Value	
1	H0x44	DDMSTAT7	00h	Upper Byte of Digitized VCCTO Value	
1	H0x45	DDMSTAT8	00h	Lower Byte of Digitized VCCTO Value	
1	H0x46	DDMSTAT9	00h	Upper Byte of Digitized Auxiliary Voltage Value at BADC Pin	
1	H0x47	DDMSTAT10	00h	Lower Byte of Digitized Auxiliary Voltage Value at BADC Pin	
1	H0x48	DDMSTAT11	00h	Upper Byte of Digitized External Temp-Sensor Value at TSNS Pin	
1	H0x49	DDMSTAT12	00h	Lower Byte of Digitized External Temp-Sensor Value at TSNS Pin	
1	H0x4A	DDMSTAT13	00h	Upper Byte of Digitized Internal Temp-Sensor Value	
1	H0x4B	DDMSTAT14	00h	Lower Byte of Digitized Internal Temp-Sensor Value	
1	H0x4C	DDMSTAT15	00h	DDM Status Register & Upper 4 bits of DC Monitor Current Value	
1	H0x4D	DDMSTAT16	00h	Lower Byte of DC Monitor Current Value	
1	H0x4E	DDMSTAT17	00h	Upper Byte of Digitized TX Power Value	
1	H0x4F	DDMSTAT18	00h	Lower Byte of Digitized TX Power Value	
1	H0x54	DDMSTAT23	00h	DDM Status Register	

Transmitter Control Register (TXCTRL3), Address: H0x01 (Page 1)

BIT	D7	D[6:2]	D1	D0		
Bit Name	LOOP_STOP	RES	AUTORNG_EN	SOFT_RESET		
Read/Write		R/W Write in setup mode only				
POR State	0	0 0000	1	0		

BIT	NAME	DESCRIPTION
D[7]	LOOP_STOP	Halts the APC loop. This bit can only be changed from a 1 to a 0 by writing 1 to LOOP_RUN. 0 = no action (default) 1 = halts APC loop
D[6:2]	RES	Reserved
D[1]	AUTORNG_EN	Enables auto-ranging of MDIN_GAIN. 0 = auto-ranging disabled 1 = auto-ranging enabled. When using APCINC the MAX3956 will automatically adjust gain setting of MDIN_GAIN in order to keep SET_APC in the range of 127 to 255 (default)
D[0]	SOFT_RESET	Soft reset will reset all registers to their default (POR) values. The Tx must be disabled, via DISABLE pin or TX_EN bit, before a soft reset can occur. 0 = no action (default) 1 = soft reset

Transmitter Control Register (TXCTRL4), Address: H0x02 (Page 1)

BIT	D[7:2]	D[7:2] D1				
Bit Name	RES	MDAVG_CNT	RES			
Read/Write		R/W Write in setup mode only				
POR State	00 0010	1	0			

BIT	NAME	DESCRIPTION
D[7:2]	RES	Reserved
D[1]	MDAVG_CNT	Select averaging depth for the MDIN signal. 0 = 32 averaging 1 = 256 averaging (default)
D[0]	RES	Reserved

Transmitter Control Register (TXCTRL5), Address: H0x0A (Page 1)

BIT	D7	D6	D5 D4		D[3:0]		
Bit Name	RES	APC_EN	IBUPDT_EN	IMUPDT_EN	RES		
Read/Write	R/W Write in setup mode only						
POR State	0	0	0	0	1000		

BIT	NAME	DESCRIPTION
D[7]	RES	Reserved
D[6]	APC_EN	Enables APC loop 0 = disabled (default) 1 = enabled
D[5]	IBUPDT_EN	Sets the way DCREG[9:0] is written to: APC enabled: 0 = maintains last value of DCREG[9:0] in initialization (default) 1 = FAULT/POR/RESTART initializes DCREG[9:2] with SET_DC[7:0] APC off: 0 = DCREG can only be changed by writing to DCINC[4:0] (default) 1 = if IBUPDT_EN is already set to 1 a write to SET_DC[7:0] is passed to DCREG[9:2]
D[4]	IMUPDT_EN	Sets the way MODREG[9:0] is written to: 0 = MODREG can only be changed by writing to MODINC[4:0] (default) 1 = if IMUPDT_EN is already set to 1 a write to SET_MOD[7:0] is passed to MODREG[8:1]
D[3:0]	RES	Reserved

Transmitter Control Register (TXCTRL6), Address: H0x0B (Page 1)

BIT	D[7:1]	D0		
Bit Name	RES	AUX_RESTART		
Read/Write	R/W Write in s	etup mode only		
POR State	1	0		

BIT	NAME	DESCRIPTION		
D[7:1]	RES	Reserved		
D[0]	AUX_RESTART	Enables restarting of APC loop by means of DISABLE pin. 0 = disabled (default) 1 = enabled		

Maximum DC-Current Register (DCMAX), Address: H0x0C (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	DCMAX [7]	DCMAX [6]	DCMAX [5]	DCMAX [4]	DCMAX [3]	DCMAX [2]	DCMAX [1]	DCMAX [0]
Read/Write		R/W Write in setup mode only						
POR State	0	0	0	1	0	0	1	0

The DCMAX register limits the maximum digital code setting in DCREG current DAC control register.

BIT	NAME	DESCRIPTION
D[7:0]	DCMAX[7:0]	Programs the maximum settable DC current (limits the maximum value that can be written to the DCREG[9:2] register). Note that it only relates to the eight most significant bits of the DCREG register. IDCMAX = (DCMAX[7:0] + 3) x 234µA 18d = 4.9mA DC current limit (default)

Maximum Modulation-Current Register (MODMAX), Address: H0x0D (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	MODMAX [7]	MODMAX [6]	MODMAX [5]	MODMAX [4]	MODMAX [3]	MODMAX [2]	MODMAX [1]	MODMAX [0]
Read/Write		R/W Write in setup mode only						
POR State	0	0	1	1	0	0	0	0

The MODMAX register limits the maximum digital code setting in MODREG current DAC control register.

BIT	NAME	DESCRIPTION
D[7:0]	MODMAX[7:0]	Programs the maximum settable modulation current (limits the maximum value that can be written to the MODREG[8:1] register). Note that it only relates to the eight MSBs of the MODREG register. $I_{\mbox{MODMAX}} = (\mbox{MODMAX}[7:0] + 8) \times 468 \mu A \\ 48d = 26 \mbox{mAp}_{-P} \mbox{ modulation current limit (default)}$

Initial or Open-Loop DC Current Register (SET_DC), Address: H0x0E (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	SET_DC	SET_DC	SET_DC	SET_DC	SET_DC	SET_DC	SET_DC	SET_DC
Dit Name	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Read/Write	R/W Write in setup mode only							
POR State	0	0	0	0	0	0	0	0

The SET_DC register set the initial or open-loop laser DC current.

ВІТ	NAME	DESCRIPTION
D[7:0]	SET_DC[7:0]	Programs the initial or open-loop DC current. The value in this register is sent to the DCREG[9:0] register's eight MSBs. $I_{DC} = (SET_DC[7:0] + 3) \times 234 \mu A \\ 0d = 0.7mA DC current (default)$

Modulation Current Register (SET_MOD), Address: H0x0F (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	SET_MOD [7]	SET_MOD [6]	SET_MOD [5]	SET_MOD [4]	SET_MOD [3]	SET_MOD [2]	SET_MOD [1]	SET_MOD [0]
Read/Write	R/W Write in setup mode only							
POR State	0	0	0	0	0	0	0	0

The SET_MOD register sets modulation current.

BIT	NAME	DESCRIPTION
D[7:0]	SET_MOD[7:0]	Programs the modulation current. The value in this register is sent to the MODREG[8:0] register's eight MSBs. $I_{\mbox{MOD}} = (\mbox{SET_MOD}[7:0] + 8) \times 468 \mu \mbox{A} \\ 0d = 3.7 \mbox{mA}_{\mbox{P-P}} \mbox{ modulation current (default)}$

DC Current Increment Register (DCINC), Address: H0x10 (Page 1)

BIT	D[7:5]	D4	D3	D2	D1	D0	
Bit Name	RES	DCINC[4]	DCINC[3]	DCINC[2]	DCINC[1]	DCINC[0]	
Read/Write	R	R/W Write in any mode					
POR State	000	0	0	0	0	0	

The DCINC register increments/decrements code in DCREG DAC control register as described below.

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
D[4:0]	DCINC[4:0]	Mode when APC enabled: DCINC[3:0] controls the maximum allowed step and hence influences APC loop dynamics especially during startup. x 0000 = 0 maximum step allowed for DCREG[9:0] x 1111 = 15d maximum step allowed for DCREG[9:0] Mode when APC disabled: Laser DC current increment/decrement applied to DCREG[9:0] upon write (two's complement number, the range is +15/-16). 1 0000 = subtract 16 from DCREG[9:0] 0 1111 = add 15 to DCREG[9:0]

Modulation Increment Register (MODINC), Address: H0x11 (Page 1)

BIT	D[7:5]	D4	D3	D2	D1	D0	
Bit Name	RES	MODINC[4]	MODINC[3]	MODINC[2]	MODINC[1]	MODINC[0]	
Read/Write	R	R/W Write in any mode					
POR State	000	0	0	0	0	0	

The MODINC register increments/decrements code in MODREG DAC control register as described below.

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
D[4:0]	MODINC[4:0]	Laser modulation current increment/decrement applied to MODREG[8:0] upon write (two's complement number, the range is +15/-16). 1 0000 = subtract 16 from MODREG[8:0] 0 1111 = add 15 to MODREG[8:0]

Average MD Current Target Register (SET_APC), Address: H0x12 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	SET_ APC[7]	SET_ APC[6]	SET_ APC[5]	SET_ APC[4]	SET_ APC[3]	SET_ APC[2]	SET_ APC[1]	SET_ APC[0]
Read/Write		R/W Write in setup mode only						
POR State	1	0	0	0	0	0	0	0

The SET_APC register sets the average laser power for the APC loop (see the Design Procedure section for more information).

BIT	NAME	DESCRIPTION
D[7:0]	SET_APC [7:0]	Sets the closed-loop MDIN target average current. This closed-loop current depends on SET_APC and MDIN_GAIN registers.

APC Increment Register (APCINC), Address: H0x13 (Page 1)

BIT	D[7:4]	D3	D2	D1	D0	
Bit Name	RES	APCINC[3]	APCINC[2]	APCINC[1]	APCINC[0]	
Read/Write	R	R/W Write in any mode				
POR State	0000	0	0	0	0	

The APCINC register increments/decrements the SET_APC register.

BIT	NAME	DESCRIPTION
D[7:4]	RES	Reserved
D[3:0]	APCINC[3:0]	Increments or decrements the SET_APC[7:0] value with the two's complement value from APCINC[3:0] (the range is +7/-8). 1000 = subtract 8 from SET_APC[7:0] 0111 = add 7 to SET_APC[7:0]

Transmitter Control Register (TXCTRL7), Address: H0x14 (Page 1)

BIT	D[7:3]	D2	D1	D0			
Bit Name	RES	MDIN_GAIN[2]	MDIN_GAIN[1]	MDIN_GAIN[0]			
Read/Write		R/W Write in setup mode only					
POR State	0 0010	1	0	0			

BIT	NAME	DESCRIPTION			
D[7:3]	RES	Reserved			
D[2:0]	MDIN_GAIN[2:0]	Selects the transimpedance gain of the MDIN input $000 = 156\Omega \qquad 011 = 1248\Omega$ $001 = 312\Omega \qquad 1xx = 2496\Omega \text{ (default)}$ $010 = 624\Omega$			

Transceiver Control Register (TOPCTRL3), Address: H0x15 (Page 1)

BIT	D7	D6	D[5:3]	D2	D1	D0		
Bit Name	LOOP_RUN	LOOP_RESTART	RES	LOOP_TH	TX_EN	XCVR_EN		
Read/Write		R/W Write in setup mode only						
POR State	1	0	010	0	0	0		

BIT	NAME	DESCRIPTION
D[7]	LOOP_RUN	Controls the APC loop. LOOP_RUN can only be changed from a 1 to a 0 by writing a 1 to LOOP_STOP. 0 = no action 1 = APC loop will restart from last saved prefreeze conditions (subject to IBUPDT_EN)
D[6]	LOOP_ RESTART	Forces APC loop out of steady-state and enables the start-up state machine 0 = no action (default) 1 = restart
D[5:3]	RES	Reserved
D[2]	LOOP_TH	Sets threshold for updating DCREG 0 = 0.125 LSb (default) 1 = 0.75 LSb
D[1]	TX_EN	Enables the Tx data path, control loop, and the DC current and modulation current DACs. 0 = Tx disabled (default) 1 = Tx enabled
D[0]	XCVR_EN	Top-level Transceiver enable 0 = disabled (default) 1 = enabled

DC Current DAC Readback Register (DCREG), Address: H0x16 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	DCREG [9]	DCREG [8]	DCREG [7]	DCREG [6]	DCREG [5]	DCREG [4]	DCREG [3]	DCREG [2]
Read/Write		Read only						
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	No							

The DCREG register provides a read-back value of the DC current DAC.

BIT	NAME	DESCRIPTION
D[7:0]	DCREG[9:2]	DC current DAC readback. The two LSbs for this register are located at Page 1 Address: H0x24[2:1].

Modulation Current DAC Readback Register (MODREG), Address: H0x17 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	MODREG [8]	MODREG [7]	MODREG [6]	MODREG [5]	MODREG [4]	MODREG [3]	MODREG [2]	MODREG [1]
Read/Write		Read only						
POR State	0	0	0	0	0	0	0	0

The MODREG register provides a read-back value of the MOD current DAC.

BIT	NAME	DESCRIPTION
D[7:0]	MODREG[8:1]	Modulation current DAC readback. The LSb for this register is located at Page 1 Address: H0x24[0].

Monitor Diode Top Peak (Averaged) Register (MD1REGH), Address: H0x18 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	MD1REG [15]	MD1REG [14]	MD1REG [13]	MD1REG [12]	MD1REG [11]	MD1REG [10]	MD1REG [9]	MD1REG [8]
Read/Write		Read only						
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	No	No	No	No	No	No	No	No

The MD1REGH register provides a read-back value of the digitized top peak current at MD input.

BIT	NAME	DESCRIPTION
D[7:0]	MD1REG[15:8]	Stored (averaged) value for monitor-diode current peak corresponding to optical P1. MD1REGH is the upper 8 bits of the 16-bit value MD1REG[15:0].

Monitor Diode Top Peak (Averaged) Register (MD1REGL), Address: H0x19 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	MD1REG [7]	MD1REG [6]	MD1REG [5]	MD1REG [4]	MD1REG [3]	MD1REG [2]	MD1REG [1]	MD1REG [0]
Read/Write		Read only						
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	No							

The MD1REGL register provides a read-back value of the digitized top peak current at MD input.

BIT	NAME	DESCRIPTION
D[7:0]	MD1REG[7:0]	Stored (averaged) value for monitor-diode current peak corresponding to optical P1. MD1REGL is the lower 8 bits of the 16-bit value MD1REG[15:0].

Monitor Diode Bottom Peak (Averaged) Register (MD0REGH), Address: H0x1A (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	MD0REG [15]	MD0REG [14]	MD0REG [13]	MD0REG [12]	MD0REG [11]	MD0REG [10]	MD0REG [9]	MD0REG [8]
Read/Write		Read only						
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	No	No	No	No	No	No	No	No

The MD0REGH register provides a read-back value of the digitized bottom peak current at MD input.

BIT	NAME	DESCRIPTION
D[7:0]	MD0REG[15:8]	Stored (averaged) value for monitor-diode current peak corresponding to optical P0. MD0REGH is the upper 8 bits of the 16-bit value MD0REG[15:0].

Monitor Diode Bottom Peak (Averaged) Register (MD0REGL), Address: H0x1B (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	MD0REG [7]	MD0REG [6]	MD0REG [5]	MD0REG [4]	MD0REG [3]	MD0REG [2]	MD0REG [1]	MD0REG [0]
Read/Write	Read only							
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	No							

The MD0REGL register provides a read-back value of the digitized bottom peak current at MD input.

BIT	NAME	DESCRIPTION
D[7:0]	MD0REG[7:0]	Stored (averaged) value for monitor-diode current peak corresponding to optical P0. MD0REGL is the lower 8 bits of the 16-bit value MD0REG[15:0].

Top Level Status Register (TOPSTAT), Address: H0x1C (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	PORD	PORD_INV	P3VFLAG	RX_INT	TX_INT	APC_INT	DDM_INT	TX_FAULT_ COPY
Read/Write	Read only	Read only						
POR State	1	0	1	0	0	0	0	0
Reset Upon Read	Yes*	Yes*	Yes*	No	No	No	No	No

^{*}Sticky bit—Once flagged these registers remain flagged (logic 1) until they are read. Once read, they are reset to 0 if the source of the flag has been removed.

The TOPSTAT register is a status register for the top-level circuitry.

ВІТ	NAME	DESCRIPTION		
D[7]	PORD	Power-on-reset of the digital core. V _{DD} vs. 1.3V 0 = deasserted 1 = asserted (default)		
D[6]	PORD_INV	Inverse of PORD 0 = deasserted (default) 1 = asserted		
D[5]	P3VFLAG	V _{CCX} /V _{CCT} vs. 2.5V 0 = deasserted 1 = asserted (default)		
D[4]	RX_INT	Interrupt/fault in Rx group. Read RXSTAT. 0 = deasserted (default) 1 = asserted		
D[3]	TX_INT	Interrupt/fault in Tx group. Read TXSTAT1 and TXSTAT2. 0 = deasserted (default) 1 = asserted		
D[2]	APC_INT	Interrupt/fault in APC group. Read TXSTAT2, TXSTAT3, and TXSTAT4 0 = deasserted (default) 1 = asserted		
D[1]	DDM_INT	Interrupt/fault in DDM group. Read DDMSTAT23. 0 = deasserted (default) 1 = asserted		
D[0]	TX_FAULT_COPY	A copy of FAULT pin value 0 = deasserted (default) 1 = asserted		

Receiver Status Register (RXSTAT), Address: H0x1D (Page 1)

BIT	D[7:5]	D4	D[3:2]	D1	D0			
Bit Name	RES	RX_RATE	RES	RXLOSREF	RXLOS_COPY			
Read/Write		Read only						
POR State	000	1	00	0	0			
Reset Upon Read	N/A	No	N/A	Yes*	Yes*			

^{*}Sticky bit- Once flagged these registers remain flagged (logic 1) until they are read. Once read, they are reset to 0 if the source of the flag has been removed.

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
D[4]	RX_RATE	Receiver data-rate setting. It is the logical OR of the RSEL pin and RATE_SEL bit. 0 = Rx set for < 4G operation 1 = Rx set for > 4G operation
D[3:2]	RES	Reserved
D[1]	RXLOSREF	Interrupt Rx LOS block reference signal failure 0 = deasserted (default) 1 = asserted
D[0]	RXLOS_COPY	A copy of Rx LOS pin value 0 = deasserted (default) 1 = asserted

Transmitter Status Register (TXSTAT1), Address: H0x21 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	LVFLAG	RES	TIN_LOS	RES	LV_TOUTA	LV_TOUTC	LV_VOUT	TX_DIS_ COPY
Read/Write		Read only						
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	Yes*	No	Yes*	Yes*	Yes*	Yes*	Yes*	No

^{*}Sticky bit- Once flagged these registers remain flagged (logic 1) until they are read. Once read, they are reset to 0 if the source of the flag has been removed

BIT	NAME	DESCRIPTION
D[7]	LVFLAG	Interrupt/fault: V _{CCT} or V _{CCTO} under-voltage detection 0 = deasserted (default) 1 = asserted
D[6]	RES	Reserved
D[5]	TIN_LOS	Interrupt/fault: Indicates TIN AC signal too low 0 = deasserted (default) 1 = asserted
D[4]	RES	Reserved
D[3]	LV_TOUTA	Interrupt/fault: TOUTA open or shorted to GND. 0 = deasserted (default) 1 = asserted
D[2]	LV_TOUTC	Interrupt/fault: TOUTC open or shorted to GND. 0 = deasserted (default) 1 = asserted
D[1]	LV_VOUT	Interrupt/fault: VOUT fault under-voltage detection (referenced to V _{CCTO}) 0 = deasserted (default) 1 = asserted
D[0]	TX_DIS_COPY	Copy of DISABLE pin. Polarity, controlled by DIS_POL, is included in this bit.

Transmitter Status Register (TXSTAT2), Address: H0x22 (Page 1)

BIT	D7	D6	D5	D4	D3	D[2:1]	D0
Bit Name	MDIN_ OPEN	DC_ OVFL	DC_ UDFL	MOD_ OVFL	MOD_ UDFL	RES	MDIN_SHRT
Read/Write		Read only					
POR State	0	0	0	0	0	00	0
Reset Upon Read	Yes*	Yes*	Yes*	Yes*	Yes*	No	Yes*

^{*}Sticky bit—Once flagged these registers remain flagged (logic 1) until they are read. Once read, they are reset to 0 if the source of the flag has been removed.

BIT	NAME	DESCRIPTION
D[7]	MDIN_OPEN	Interrupt/fault: MDIN pin open 0 = deasserted (default) 1 = asserted
D[6]	DC_OVFL	Interrupt: DCREG input over maximum warning 0 = deasserted (default) 1 = asserted
D[5]	DC_UDFL	Interrupt: DCREG input underflow warning 0 = deasserted (default) 1 = asserted
D[4]	MOD_OVFL	Interrupt/fault: MODREG input over maximum warning 0 = deasserted (default) 1 = asserted
D[3]	MOD_UDFL	Interrupt: MODREG input underflow warning 0 = deasserted (default) 1 = asserted
D[2:1]	RES	Reserved
D[0]	MDIN_SHRT	Interrupt/fault: MDIN shorted to ground or supply. 0 = deasserted (default) 1 = asserted

Transmitter Status Register (TXSTAT3), Address: H0x23 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D[1:0]
Bit Name	SSMODE	SSMODEB	MD0_OVFL	MD0_UDFL	MD1_OVFL	MD1_UDFL	RES
Read/Write		Read only					
POR State	0	1	0	0	0	0	00
Reset Upon Read	No	Yes*	Yes*	Yes*	Yes*	Yes*	No

^{*}Sticky bit—Once flagged these registers remain flagged (logic 1) until they are read. Once read, they are reset to 0 if the source of the flag has been removed.

BIT	NAME	DESCRIPTION
D[7]	SSMODE	APC steady-state mode monitor 0 = acquisition mode (default) 1 = steady-state mode
D[6]	SSMODEB	APC inverted steady-state mode monitor 0 = steady-state mode 1 = acquisition mode (default)
D[5]	MD0_OVFL	Interrupt: MD0REG input over maximum warning 0 = deasserted (default) 1 = asserted
D[4]	MD0_UDFL	Interrupt: MD0REG input underflow warning 0 = deasserted (default) 1 = asserted
D[3]	MD1_OVFL	Interrupt: MD1REG input over maximum warning 0 = deasserted (default) 1 = asserted
D[2]	MD1_UDFL	Interrupt: MD1REG input underflow warning 0 = deasserted (default) 1 = asserted
D[1:0]	RES	Reserved

Transmitter Status Register (TXSTAT4), Address: H0x24 (Page 1)

BIT	D[7:5]	D4	D3	D2	D1	D0	
Bit Name	RES	SET_APC_ OVFL	SET_APC_ UDFL	DCREG[1]	DCREG[0]	MODREG[0]	
Read/Write		Read only					
POR State	000	0	0	0	0	0	
Reset Upon Read	No	Yes*	Yes*	No	No	No	

^{*}Sticky bit—Once flagged these registers remain flagged (logic 1) until they are read. Once read, they are reset to 0 if the source of the flag has been removed

BIT	NAME	DESCRIPTION
D[7:5]	RES	Reserved
D[4]	SET_APC_OVFL	Interrupt: APCINC setting attempting to overflow SET_APC register 0 = deasserted (default) 1 = asserted
D[3]	SET_APC_UDFL	(AUTORNG_EN=1) Interrupt: SET_APC below minimum value. 0 = deasserted (default) 1 = asserted (AUTORNG_EN = 0) Interrupt: SET_APC below 64d. 0 = deasserted (default) 1 = asserted
D[2:1]	DCREG[1:0]	LSbs of DCREG register
D[0]	MODREG[0]	LSb of MODREG register

DDM Status Register (DDMSTAT1), Address: H0x3E (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_RSSI [15:8]	
Read/Write	Read only	Reports upper byte of the measured value of RSSI.
POR State	00h	

DDM Status Register (DDMSTAT2), Address: H0x3F (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_RSSI [7:0]	
Read/Write	Read only	Reports lower byte of the measured value of RSSI.
POR State	00h	

DDM Status Register (DDMSTAT3), Address: H0x40 (Page 1)

BIT	D[3:0]	DESCRIPTION
Bit Name	DDM_VCCX [11:8]	Reports upper nibble of the measured value of VCCX. The DDM_VCCX[11:0] value
Read/Write	Read only	is unsigned with full scale of 4.658V. See the <i>Electrical Characteristics</i> for VCCX
POR State	00h	operational range.

DDM Status Register (DDMSTAT4), Address: H0x41 (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_VCCX [7:0]	Reports lower byte of the measured value of VCCX. The DDM_VCCX[11:0] value
Read/Write	Read only	is unsigned with full scale of 4.658V. See the <i>Electrical Characteristics</i> for VCCX
POR State	00h	operational range.

DDM Status Register (DDMSTAT5), Address: H0x42 (Page 1)

BIT	D[3:0]	DESCRIPTION
Bit Name	DDM_VCCT [11:8]	Reports upper nibble of the measured value of VCCT. The DDM_VCCT[11:0] value
Read/Write	Read only	is unsigned with full scale of 4.658V. See the <i>Electrical Characteristics</i> for VCCT
POR State	00h	operational range.

DDM Status Register (DDMSTAT6), Address: H0x43 (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_VCCT [7:0]	Reports lower byte of the measured value of VCCT. The DDM_VCCT[11:0] value
Read/Write	Read only	is unsigned with full scale of 4.658V. See the <i>Electrical Characteristics</i> for VCCT
POR State	00h	operational range.

DDM Status Register (DDMSTAT7), Address: H0x44 (Page 1)

BIT	D[3:0]	DESCRIPTION
Bit Name	DDM_VCCTO [11:8]	Reports upper nibble of the measured value of VCCTO. The DDM_VCCTO[11:0] value
Read/Write	Read only	is unsigned with full scale of 4.658V. See the <i>Electrical Characteristics</i> for VCCTO
POR State	Hx00	operational range.

DDM Status Register (DDMSTAT8), Address: H0x45 (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_VCCTO [7:0]	Reports lower byte of the measured value of VCCTO. The DDM_VCCTO[11:0] value
Read/Write	Read only	is unsigned with full scale of 4.658V. See the Electrical Characteristics for VCCTO
POR State	00h	operational range.

DDM Status Register (DDMSTAT9), Address: H0x46 (Page 1)

BIT	D[3:0]	DESCRIPTION
Bit Name	DDM_BADC [11:8]	
Read/Write	read only	Reports upper nibble of the measured voltage value BADC pin. The DDM_BADC[11:0] value is unsigned with full scale of 1.164V.
POR State	00h	value is unsigned with run sould of 1.1044.

DDM Status Register (DDMSTAT10), Address: H0x47 (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_BADC [7:0]	
Read/Write	Read only	Reports lower byte of the measured voltage value BADC pin. The DDM_BADC[11:0] value is unsigned with full scale of 1.164V.
POR State	00h	Traine to anoighed with fall sould of 1.10-14.

DDM Status Register (DDMSTAT11), Address: H0x48 (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_EXT_TSNS [15:8]	Reports upper byte of the measured value of external temperature sensor between the
Read/Write	Read only	pins TSNS and TGND. This is the signed integer portion of the external temperature
POR State	00h	result (range: -128°C to +127°C).

DDM Status Register (DDMSTAT12), Address: H0x49 (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_EXT_TSNS [7:0]	Reports lower byte of the measured voltage value of external temperature sensor
Read/Write	Read only	between the pins TSNS and TGND. This is the fractional portion of the external
POR State	00h	temperature result (range: 0°C to 255/256°C).

DDM Status Register (DDMSTAT13), Address: H0x4A (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_INT_TSNS [15:8]	
Read/Write	L Read Only	Reports upper byte of the measured value of internal temperature sensor. This is the signed integer portion of the internal temperature result (range: -128°C to +127°C).
POR State	00h	orginal integer portion of the internal temperature result (range: 120 0 to 1127 0).

DDM Status Register (DDMSTAT14), Address: H0x4B (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_INT_TSNS [7:0]	
Read/Write	Read only	Reports lower byte of the measured voltage value of internal temperature sensor. This is the fractional portion of the internal temperature result (range: 0°C to 255/256°C).
POR State	00h	are madional portion of the internal temperature result (range: 0 0 to 200/200 0).

DDM Status Register (DDMSTAT15), Address: H0x4C (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	RES	DDM_ TX_SHDN	RES	DDM_ TIN_LOS	DDM_ TXRPT[11]	DDM_ TXRPT[10]	DDM_ TXRPT[9]	DDM_ TXRPT[8]
Read/Write		Read only						
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	No	No	No	No	No	No	No	No

The DDMSTAT15 register is a status register showing flags with impact on digital monitors.

BIT	NAME	DESCRIPTION	
D[7]	RES	Reserved	
D[6]	DDM_TX_SHDN	TX status flag 0 = normal operation (default) 1 = shut down (due to POR, FAULT, DISABLE, TX_EN=0, or XCVR_EN = 0)	
D[5]	RES	Reserved	
D[4]	DDM_TIN_LOS	Loss-of-signal at TIN 0 = deasserted (default) 1 = asserted	
D[3:0]	DDM_TXRPT[11:8]	Reports the measured value of DC or average laser current. This is the upper nibble of TXB. These bits along with the lower byte in DDMSTAT16 make up the 12-bit value.	

DDM Status Register (DDMSTAT16), Address: H0x4D (Page 1)

BIT	D[7:0]	DESCRIPTION
Bit Name	DDM_TXRPT [7:0]	Reports lower byte of DC or average laser current.
Read/Write	Read only	The DDM_TXRPT_SEL bit in DDM_CTRL9 register selects whether DC or average laser
POR State	00h	current is reported.

DDM Status Register (DDMSTAT17), Address: H0x4E (Page 1)

BIT	D[3:0]	DESCRIPTION
Bit Name	DDM_TXP [11:8]	
Read/Write	Read only	Reports the measured value of the monitor diode current which represents average laser power. This is the upper nibble of the 12-bit value.
POR State	00h	power. This is the appear hissis of the 12 sit value.

DDM Status Register (DDMSTAT18), Address: H0x4F (Page 1)

BIT	D[7:0]	DESCRIPTION		
Bit Name	DDM_TXP [7:0]			
Read/Write	Read only	Reports the measured value of the monitor diode current which represents average laser power. This is the lower byte of the 12-bit value.		
POR State	00h	power. This is the lower byte of the 12-bit value.		

DDM Status Register (DDMSTAT23), Address: H0x54 (Page 1)

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	DDM_ TMAX	DDM_ TMIN	RES	DDM_ P2VFLAG	DDM_RSSI_ HI_FAIL	DDM_RSSI_ LO_FAIL	DDM_EXT_ T_FAIL	DDM_ LVFLAG
Read/Write	Read only							
POR State	0	0	0	0	0	0	0	0
Reset Upon Read	Yes*	Yes*	No	Yes*	Yes*	Yes*	Yes*	Yes*

^{*}Sticky bit—Once flagged these registers remain flagged (logic 1) until they are read. Once read, they are reset to 0 if the source of the flag has been removed.

ВІТ	NAME	DESCRIPTION
D[7]	DDM_TMAX	Interrupt: Internal temperature above +120°C. 0 = deasserted (default) 1 = asserted
D[6]	DDM_TMIN	Interrupt: Internal temperature below -50°C. 0 = deasserted (default) 1 = asserted
D[5]	RES	Reserved
D[4]	DDM_P2VFLAG	Interrupt: VCCX/VCCT vs. 2.1V 0 = deasserted (default) 1 = asserted
D[3]	DDM_RSSI_HI_FAIL	Interrupt: RSSI is stuck high. 0 = deasserted (default) 1 = asserted
D[2]	DDM_RSSI_LO_FAIL	Interrupt: RSSI is stuck low. 0 = deasserted (default) 1 = asserted
D[1]	DDM_EXT_T_FAIL	Interrupt: Status indicating that the external temperature sense has failed. When this condition occurs, the external temperature is forced to -128°C. 0 = deasserted (default) 1 = asserted
D[0]	DDM_LVFLAG	Interrupt: Supply voltage too low for accurate DDM measurement. 0 = deasserted (default) 1 = asserted

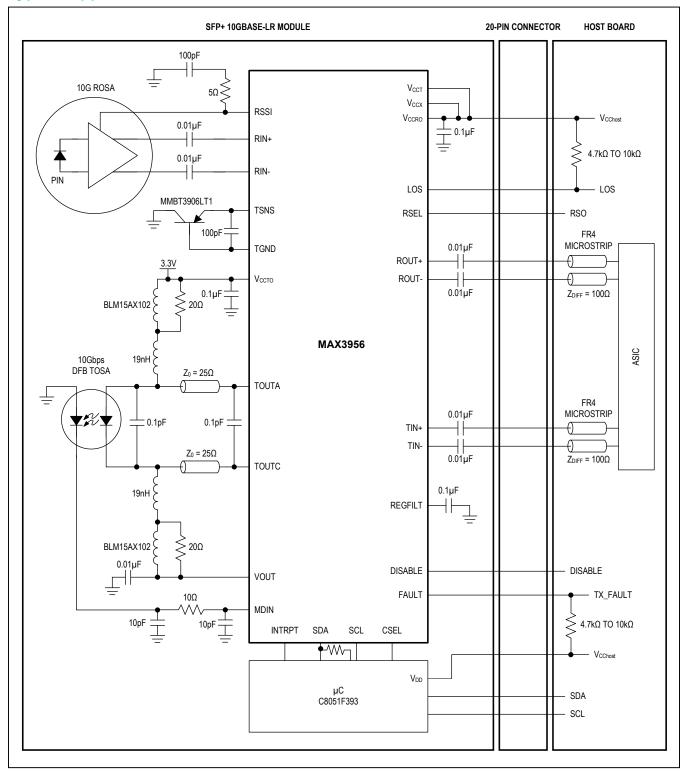
MAX3956

11.3Gbps Transceiver with DDM and DC-Coupled Laser Interface

Layout Considerations

The high-speed data inputs and outputs are the most critical paths for the device, and great care should be taken to minimize discontinuities on these transmission lines between the connector and the IC. The following are some suggestions for maximizing the device's performance:

- The data inputs should be wired directly between the connector and IC without stubs.
- The data transmission lines to the laser should be kept as short as possible, and the impedance of the transmission lines must be considered part of the laser matching network.
- An uninterrupted ground plane should be positioned beneath the high-speed I/Os.
- Ground path vias should be placed close to the IC and the input/output interfaces to allow a return current path to the IC and the laser.
- Maintain 100Ω differential transmission line impedance for the RIN, ROUT, and TIN I/Os.


- The data transmission lines to the laser should be kept as short as possible, and must be designed for 50Ω differential or 25Ω single-ended characteristic impedance.
- Use good high-frequency layout techniques and multilayer boards with an uninterrupted ground plane to minimize EMI and crosstalk.

Refer to the schematic and board layers of the HFRD-67 reference design data sheet for more information.

Exposed-Pad Package and Thermal Considerations

The exposed pad on the MAX3956 is the only electrical connection to ground and provides a very low-thermal resistance path for heat removal from the IC. The pad is also electrical ground on the device and must be soldered to the circuit board ground for proper thermal and electrical performance. Refer to Application Note 862: HFAN-08.1: *Thermal Considerations of QFN and Other Exposed-Paddle Packages* for additional information.

Typical Application Circuit

MAX3956

11.3Gbps Transceiver with DDM and DC-Coupled Laser Interface

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3956ETJ+	-40°C to +85°C	32 TQFN-EP*

Note: Parts are guaranteed by design and characterization to operate over the -40°C to +95°C ambient temperature range (T_A) and are tested up to +95°C.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.	
32 TQFN-EP	T3255+3	<u>21-0140</u>	<u>90-0001</u>	

Chip Information

PROCESS: BICMOS

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

^{*}Exposed pad.

MAX3956

11.3Gbps Transceiver with DDM and DC-Coupled Laser Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/13	Initial release	_
1	2/14	Fixed errors in <i>Electrical Characteristics</i> , <i>Detailed Description</i> , Figure 7, Figure 8, Figure 14, Table 11, DDM Control Register tables, <i>Design Procedure</i> , Fault Mask Control Register, DDM Status Register tables, and <i>Typical Application Circuit</i>	7, 22, 26, 27, 35, 41, 43, 44, 50, 53, 75, 76, 80
2	6/14	Fixed errors in Electrical Characteristics, Power-On-Reset (POR) section, Figure 18, and the MAX3956 Mode Control Register, DDM Control Register, Fault Mask Control Register, Transmitter Status Register tables, and Typical Application Circuit	6, 27, 38, 42, 44, 53, 72, 80
3	9/14	Updated the Electrical Characteristics and added TOC27 to Typical Operating Characteristics	2, 11

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А